Badanie wpływu napowietrzania kadłuba łodzi z napędem elektrycznym na zużycie energii

Researching the impact of electric boat hull aeration energy consumption

Andrzej Łebkowski         

Abstract: 

The paper presents the results of research on the hull aeration system for an electric powered boat. The examples of marine vessels with such technology is used for minimization of energy use and CO2 emissions are shown. The currently known methods for lowering the fuel consumption in watercraft are discussed

Streszczenie: 

W artykule przedstawiono wyniki badań systemu napowietrzania kadłuba dla łodzi z napędem elektrycznym. Zaprezentowano przykłady jednostek morskich, w których zastosowano technologie, służące do minimalizacji zużycia energii oraz emisji CO2. Omówiono także aktualnie znane sposoby redukcji zużycia paliwa dla jednostek pływających.

Słowa kluczowe: 
napowietrzanie kadłuba
redukcja zużycia energii
statek elektryczny
Issue: 
Pages: 
148
156
Download full text in pdf: 
References: 

ACES air lubrication, 2011, www.youtube.com/watch?v=kDC11_kHxqE.

AIR STEP®, 2016, www.beneteau.com.

Bobst, G.L., 1992, Air Bubble Lubricated Boat Hull, patent US5456201.

Ceccio, S.L., Mäkiharju, S.A., 2012, Air Lubrication Drag reduction on Great Lakes Ships, University of Michigan, Department of Naval Architecture and Marine Engineering.

Culbertson, A.J., 1897, Pneumatic Prg Pelling Means For Vessels, patent US608757A.

DK Group installs Air Cavity System, 2012, www.maritimedanmark.dk/?Id=14067, 04.

Exxon Research Engineering Co., 1965, Frictional Resistance Reduction Using Non-Newtonian Fluid, patent US3289623A.

Fleetwings Inc., 1931, Boat Hull and Method of Reducing the Water Friction Thereupon, patent US1894256A.

Georges, M., Girodin, H., 1967, Bubble Hulls, patent US3518956A.

Gorbachev, Y., Amromin, E., 2012, Ship Drag Reduction by Hull Ventilation From Laval to Near Future: challenges and successes, ATMA.

Kaushik, M., 2016, 14 Technologies to Make the Ultimate Green Ship, Marine Insight.

Kawabuchi, M., Kawakita, Ch., Mizokami, S., Higasa, S., Kodan, Y., Takano, S., 2011, CFD Predictions of Bubbly Flow Around an Energy-Saving Ship with Mitsubishi Air Lubrication System, Mitsubishi Heavy Industries Technical Review, vol. 48, no. 1.

Kawakita, Ch., Sato, S., Okimoto, T., 2015, Application of Simulation Technology to Mitsubishi Air Lubrication System, Mitsubishi Heavy Industries Technical Review, vol. 52, no. 1.

Kumagai, I., Takahashi, Y., Murai, Y., Power-Saving Device for Air Bubble Generation Using a Hydrofoil to Reduce Ship Drag: Theory, Experiments, and Application to Ships, Ocean Engineering, vol. 95, s.183–194.

Łebkowski, A., 2017, Electric Vehicle Data Recorder, „Przegląd Elektrotechniczny”, R. 93, nr 2.

Mitsubishi Heavy Industries Ltd., 2010, Air Bubble Recovery Device of Ship, patent US8424475B2.

Mizokami, S., Kawakita, Ch., Kodan, Y., Takano, S., Higasa, S., Shigenaga, R., 2010, Experimental Study of Air Lubrication Method and Verification of Effects on Actual Hull by Means of Sea Trial, Mitsubishi Heavy Industries Technical Review, vol. 47, no. 3.

NIPPON TUSEN KAISMA, 2016, www.nyk.com.

Sartori, Ch., 1938, High-Speed Boat, patent US2231296A.

Thill, C., Toxopeus, S., van Walree, F., 2005, Project Energy-Saving Air-Lubricated Ships (PELS), 2nd International Symposium on Seawater Drag Reduction, Busan, Korea, May 23–26.

Citation pattern: Łebkowski A., Badanie wpływu napowietrzania kadłuba łodzi z napędem elektrycznym na zużycie energii, Scientific Journal of Gdynia Maritime University, No. 098, pp. 148-156, 2017

BibTeX     EndNote