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2-D VERSUS 3-D STRESS ANALYSIS  
OF A MARINE PROPELLER BLADE 

The shapes of propeller blades are built from two-dimensional data of blade cross sections. The stress 
field of propeller blades are analyzed basing on the results of three-dimensional models and, previ-
ously, on beam models. In this paper the possibility of applying the theory of thin shells for this pur-
pose is discussed.  

INTRODUCTION 

 Stress analysis of marine propellers presents unique difficulties due to compli-
cated, doubly curved, shape of the blades that have to be accounted for with con-
siderable accuracy. Even with the stage of geometric modelling completed, there is 
still the question which of the mechanical models to choose for subsequent stress 
analysis. Prior to the ascent of numerical techniques based on automated comput-
ing, the beam theory was generally used for this purpose (see [2, 4, 6]). This ap-
proach seems unjustifiably crude nowadays though. Undoubtedly, the most reliable 
results can be obtained from 3-D analysis [4]. Yet for reasons to be explained else-
where, application of a 2-D shell model is worth considering. 
 This work will focus merely on the process of creating 3-D model of propeller 
blades for purposes of structural analysis. It seems it is best to follow here the tradi-
tional method of designing marine propellers, wherein one obtains design data in 
the form two-dimensional data tables of blade cross sections. But with such data it 
is still difficult to picture the real shape of propeller blades.  
 An equivalent 2-D model is also created from those data. Both models are 
then solved numerically by the Finite Element Method [16] with the help of MD 
Nastran®. 3-D model is analyzed basing on the classical theory of deformable sol-
ids, whereas for the 2-D model the classical theory of thin shells is used. Finally, 
the comparison of results obtained from solving 3-D and 2-D models is carried out. 
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1. 3-D MODEL OF A PROPELLER BLADE 

1.1. Blade description 

The description of the geometry of marine propeller blades can be found in 
many references (see e.g. [2, 4, 6, 15, 17, 18]).  Here we only recall some conven-
tions to which we will consistently stick throughout this work. Henceforth, we will 
refer to the right handed propellers only. Therefore, the figures presenting blades or 
propellers show the leading edge to the right. However, where only radial cross-
sections are presented, they are shown 
with the leading edge to the left in ac-
cordance with the general convention 
adopted for drawing airfoils [1].  
 The orientation of the global right 
handed XYZ Cartesian system follows 
these rules (see fig. 1). The Z axis is 
aligned with the symmetry axis of the 
propeller and is directed aft. The Y axis 
is perpendicular to Z and aligned with 
the axis about which a controllable pitch 
blade would be rotated to change pitch 
(although no assumption is made that 
the propeller is actually a controllable 
one). Additionally we assume the Y axis 
aims up and, thus, the X axis aims star-
board. 

 

Fig. 1. Right handed propeller and        
convention coordinate system 

1.2. Generation of Spatial Coordinates 

 Specific data of the blade analyzed in this work are contained in table 1. There 
XC denotes the ratios between abscises and chord, XL denotes the distance from 
leading edge, YG denotes the suction side ordinate, YD denotes the pressure side 
ordinate, RR denotes the ratio of radii, RLE denotes the leading edge radius and 
RTE denotes the trailing edge radius of the blade cross section. 
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Table 1  
Blade section coordinates 

XC 0.0 0.0125 0.025 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.00 

RR = 0.2500   RLE = 0.0061   RTE = 0.0037 

XL 0.0 0.0281 0.0563 0.1125 0.2251 0.4502 0.6752 0.9003 1.1254 1.3505 1.5755 1.8006 2.0257 2.1382 2.2508

YG 0.0 0.0364 0.0610 0.0958 0.1507 0.2323 0.2864 0.3183 0.3285 0.3179 0.2831 0.2214 0.1294 0.0710 0.0187

YD 0.0 0.0225 0.0334 0.0420 0.0487 0.0511 0.0485 0.0465 0.0454 0.0461 0.0453 0.0402 0.0274 0.0172 0.0187

. . . . . . . . . . . . . . . 

RR = 0.9750   RLE = 0.0055   RTE = 0.0003 

XL 0.0 0.0252 0/0504 0.1008 0.2016 0.4031 0.6047 0.8063 1.0079 1.2094 1.4110 1.6126 1.8142 1.9149 2.0157

YG 0.0 0.0051 0.0092 0.0158 0.0270 0.0448 0.0571 0.0644 0.0668 0.0644 0.0568 0.0438 0.0251 0.0135 0.0017

YD 0.0 0.0003 -0.0005 -
0.0031-0.0087-0.0188-0.0264-0.0310-0.0325-0.0310-0.0267-0.0198-0.0107-0.0054 0.0017

 Basing on these data we can draw the blade section in a coordinate system in 
accordance with airfoil conventions. For example, the following figure 2 presents 
the full developed section of the blade at the radius ratio of 0.25 

 

Fig. 2. A Blade Section in the Airfoil coordinate system 

 The spatial coordinates for propeller blade are generated by transforming the 
2-D coordinates of the expanded view and the blade sections into three-
dimensional coordinates of the blade in its final forms (fig. 3). The fully developed 
sections in the expanded view show skew as an offset SK of the mid chord from the 
Y axis. In some cases, the point of maximal thickness is used rather than the mid 
chord point. If the blade has rake, the unwrapped sections on the XY plane are off-
set a distance along the Z axis, an amount equal to the rake RK. Each section is 
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rotated about the point of intersection of the mid chord line with the YZ plane to its 
specified pitch angle φ, measured between the pitch chord line and the XY plane. 
Angles measured counter-clockwise from the XY plane are positive. If there is no 
rake, the projection of the line on the XZ plane runs through the origin of the XZ 
system, which becomes the centre of the pitch rotation. The coordinates of the face 
and back can be transformed to the global XYZ system using the following equa-
tions and keeping in mind that TB and TF are negative above the chord line and 
positive below. 
 

 
Fig. 3. Generation of spatial XYZ coordinates 

 For points lying on the face and back of the blade section which have coordi-
nates X < 0 (points are in the left of the Z axis on the XZ plane in figure 3), the spa-
tial coordinates of these points are computed as follows 

 
φφφ cossin

2
1sin TBcCSKZB −⎟
⎠
⎞

⎜
⎝
⎛ −+= , (1) 

 
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛ −+= φφφω sincos

2
1cos1 TBcCSK

rB , (2) 

 BrXB ωsin−=  (3) 

 BrYB ωcos=  (4) 

 On the other hand, for the points lying on the face and back of the blade sec-
tion which have coordinates X > 0 (points are in the right of the Z axis on the XZ 
plane in figure 3), the spatial coordinates are computed as follows 
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 Using the formulas from (1) to (8) we can compute spatial coordinates of 
points on the face and back of each blade cross section automatically from design 
data using a MATLAB® routine.  

1.3. The analysis models of the blade 

 Having generated spatial coordinates of cross sections, we can create the mod-
els for analyzing the structure and then use PATRAN® pre/postprocessor to visual-
ize the models and the results. For example, table 2 shows the design data of a ma-
rine propeller obtained from a team in IFFM of the PAScie in Gdańsk.  

Table 2  

Principal characteristics for fixed propeller thrust blade section profile NACA65   

Number of blades       5 Wake fraction            0.3160 

Diameter (M)       7.0000 Rake (DEG)            0.0000 

Hub Diameter (M)       1.4000 Skewback (DEG)            4.8991 

Design Speed (W)     22.0000 Blade Area Ratio             0.9750 

Revs. Per minute     91.0000 Thrust (N) 2748202.0000 

Shaft Immersion (M)      4.5000 Power (KW)     38741.8945 

Wat. Densc (KGM-3) 1025.0000 Advance Coef.            0.7285 

Cavit. Number      2.4936 Thrust Coef.            0.4855 

Tip Vortex Kernel (MM)   138.2382 Torque Coef.            0.1027 

Coef. Of  Distr. Circu      0.5409 Efficiency            0.5484 

After generating spatial coordinates from two-dimensional data tables of blade 
cross sections we build 3-D geometric model of the propeller blade which is cre-
ated from solid elements (HEXA, PENTA and TETRA elements). Figure 4a shows 
PATRAN visualization of the model. A 2-D model of the same propeller blade is 
also created from 2-D QUARD4 and TRIA3 elements (see fig. 4b). 
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Fig. 4. Geometrical models of the propeller blade 

 To solve these models with MD Nastran®, we need to prescribe the material 
properties, boundary conditions and loads acting on the blade. It is assumed the 
blade is clamped at the root section (where the blade intersects with the propeller 
hub), and is subject to the action of pressure loads arising from water flow on both 
sides of the blade, and also to centrifugal forces due to rotational velocity of the 
propeller (see e.g. [2, 6, 8, 15, 17]). As to the material properties, it is assumed the 
blade is made up of high tensile brass with Young modulus E = 7·1010 (Pa), Pois-
son ration = 0.33 and density ρ = 8·103 (KGm-3).  
 Figure 5 presents the distribution of the pressure acting on the face of the 
blade. These values are obtained from design data of the marine propeller. 

           

Fig. 5. Distribution of pressures on the face of the 3-D model 

  
 The figures 6 and 7 show graphically the results of several runs of MD 
Nastran® on both models of the blade. 
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b) 

Fig. 6. Displacement field of 2-D model (a) versus 3-D model (b) 

 

      

b) a) 

Fig. 7. Distribution of stress on the Face (a) and Back (b) of the 3-D model 
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2. ANALYSIS OF THE RESULTS 

 The figures 6a and 6b present the displacement fields of the 2-D model, and  
3-D model, respectively. We can recognize the similarity in the distribution of dis-
placement field in both models. The maximum value of the displacement of the  
2-D model is about 5.19% smaller than its counterpart of the 3-D model. The dis-
placements in the region close to the root section of the blade are very small. The 
displacement field increases along the propeller radius assuming the largest values 
near the tip. Within a fixed blade cross section the displacement field decreases 
from the leading edge to the trailing edge.  
 The distribution of the stress on the face and back of 3-D model is presented 
in the figure 7. As one might expect, the results show that the stresses reach values 
in the region near the root section around the leading edge. The stress field de-
creases with the growing values of the radius and drop to small values in the region 
near the tip of the blade. Such distributions of the displacements and the stresses 
seem realistic in comparison to what is observed in practice, because the blades are 
fixed in the propeller hub at their root sections and bent by the difference of pres-
sures between their face and back sides.  
 The classical method of calculating the strength of propeller blades based on 
the beam theory (Taylor’s Method) also shows that the maximum stresses in the 
propeller blade occur in the region around the root section of the blade [2, 4, 6]. 
The newer method using theory of shells of moderate thickness for solving thick 
finite element model (see [6, 8]) also results in the distribution of the stress field 
similar to the results obtained from our computations.   

CONCLUSION 

 Solving the 3D model of propeller blade basing on the classical theory of de-
formable solids shows us the values of the stress and displacement fields in the 
blade. From that we can know the maximum displacement and stress and we can 
estimate the strength reliability of the propeller. When the blades are deformed, 
(that is, their geometry is changed) the hydrodynamic properties (as angles of at-
tack, distribution of pressures on back and face surface etc.) of cross sections also 
change. Changing hydrodynamic properties of blades alters the efficiency of the 
propeller during the operation. If we know about these changes we can limit or 
eliminate the unfavorable changes by correcting or improving the geometry of the 
blade already at the design stage. Since the alteration of the geometry results prin-
cipally from bending of the blade (stretching due to centrifugal forces contributes 
only a secondary effect), and 3-D approach does not account directly for bending 
as an independent deformation component, it seems reasonable to base the analysis 
on a theory of shells rather than the theory of 3-D deformable body. In practical 
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terms a propeller blade is a curved shell of variable thickness. Unfortunately, the 
theory of shells of variable thickness has not been completed yet, nowadays [3, 19].  
For now a 2-D model based on the classical theory of thin shells [4, 5, 6, 7, 8] for 
propeller blades must satisfy our requirements. The results of the case study di-
scussed in this work seem to substantiate the anticipation that a 2-D approach can 
yield reliable basis for analysis of this kind. 
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DWU- I TRÓJWYMIAROWA ANALIZA WYTRZYMAŁOŚCIOWA  
SKRZYDŁA OKRĘTOWEJ ŚRUBY NAPĘDOWEJ 

Streszczenie 
 
W pracy omówiono rezultaty analizy wytrzymałościowej skrzydła okrętowej śruby napędowej. Analizę 
przeprowadzono za pomocą metody elementów skończonych. Zastosowano model trójwymiarowy 
oraz dwuwymiarowy (powłokowy) i porównano wyniki otrzymane dla obu podejść do tego problemu. 


