

Nr 100/2017, 164–178 ISSN 1644-1818 e-ISSN 2451-2486

CHARAKTERYSTYKI MOCY STRAT ENERGETYCZNYCH W WYBRANYCH ELEMENTACH UKŁADÓW HYDRAULICZNYCH

CHARACTERISTICS OF POWER OF ENERGY LOSSES IN SELECTED ELEMENTS IN HYDRAULIC SYSTEMS

Grzegorz Skorek

Akademia Morska w Gdyni, Morska 81-87, 81–225 Wydział Mechaniczny, Katedra Podstaw Techniki, Gdynia, e-mail: grzesko@am.gdynia.pl

Streszczenie: W artykule porównano dwa układy ze sterowaniem dławieniowym, które zasilane były pompą o stałej wydajności. Poruszono tematykę związaną ze stratami energetycznymi układów hydrostatycznych z silnikami hydraulicznymi liniowymi sterowanymi proporcjonalnie rozdzielaczem proporcjonalnym. Przedstawiono i porównano wykresy mocy strat dwóch układów hydraulicznych pracujących przy tych samych parametrach prędkości i obciążenia siłownika, lecz różniących się strukturą oraz możliwością oszczędności energii.

Słowa kluczowe: moc, straty energetyczne, sterowanie proporcjonalne, układ hydrostatyczny, silnik hydrauliczny liniowy.

Abstract: In this article two hydrostatic systems with a throttling steering fed by a constant capacity pump were compared. The subject matter connected with an energy losses of hydrostatic systems with hydraulic linear motors controlled by proportional directional valve was presented. Diagrams of power losses of two hydraulic systems worked at the same parameters of a speed and a load of hydraulic linear motor, which were different due to structure and ability of an energy saving, were presented and were compared.

Keywords: power, energy losses, proportional control, hydrostatic system, hydraulic cylinder.

1. WSTĘP

W artykule przedstawiono charakterystyki mocy strat energetycznych oraz mocy rozwijanych w elementach dwóch różnych układów ze sterowaniem dławieniowym szeregowym prędkości silnika hydraulicznego liniowego. Analizę przeprowadzono, porównując przy wybranych parametrach pracy silnika hydraulicznego – siłownika linie mocy strat energetycznych występujących w elementach tych struktur. Badania dotyczyły dwóch układów z rozdzielaczem proporcjonalnym zasilanym pompą o stałej wydajności:

- z zastosowaniem zaworu przelewowego struktura stałociśnieniowa: p=cte (rys. 1);
- z zastosowaniem zaworu przelewowego sterowanego ciśnieniem z przewodu dopływowego siłownika struktura zmiennociśnieniowa: p=var (rys. 2).

Najczęściej spotykanym układem sterowania proporcjonalnego silnika hydraulicznego liniowego jest system, w którym rozdzielacz proporcjonalny zasilany jest pompą o stałej wydajności współpracującą z zaworem przelewowym stabilizującym stały poziom ciśnienia zasilania p=cte (rys. 1). Spadek ciśnienia w siłowniku równoważy obciążenie działające na siłownik. Rozdzielacz proporcjonalny generuje dwa spadki ciśnienia na dopływie i odpływie z siłownika. Pompa w układzie p=cte musi przed zaworem przelewowym generować ciśnienie, które nie będzie mniejsze od ciśnienia wymaganego przez siłownik. Silnik hydrauliczny liniowy, będący w układzie elementem wykonawczym, może wymagać ciśnienia w zależności od swego obciążenia, zmieniającego się od zera do wartości nominalnej. Przy dochodzeniu do wartości nominalnej obciążenia, spadek ciśnienia w szczelinach dławiących rozdzielacza dąży do zera [Paszota 2000; Skorek 2014].

Rys. 1. Schemat badanego układu zasilanego przy stałym ciśnieniu – struktura p=cte *Fig. 1. Diagram of the test system fed at constant pressure – structure p=cte*

Można stwierdzić, iż zespół pompy i zaworu przelewowego w układzie p=cte jest zespołem gotowym do zasilania układu przy maksymalnym ciśnieniu i maksymalnej wydajności. Jednakże nie jest on zwykle wykorzystywany w takim stopniu, ponieważ element wykonawczy w danym momencie jest obciążony siłą, która wymaga spadku ciśnienia mniejszego od nominalnego [Skorek 2013]. Układ ten uzyskuje wysoką sprawność energetyczną, równą sprawności układu bez sterowania dławieniowego, jedynie w punkcie o maksymalnych wartościach współczynnika \overline{M}_{M} obciążenia i współczynnika $\overline{\omega}_{M}$ prędkości silnika. Przy obniżającym się obciążeniu silnika, a szczególnie przy jednoczesnym obniżaniu się prędkości silnika, sprawność η układu gwałtownie maleje.

Wartość współczynnika M_M obciążenia oblicza się z następującego wzoru:

$$\overline{\mathbf{M}}_{\mathbf{M}} = \frac{F_{M}}{F_{Mn}} \tag{1}$$

Otrzymuje się wówczas wyrażenie bezwymiarowe, będące stosunkiem siły obciążającej siłownik do siły nominalnej wynoszącej w tym przypadku $F_{Mn} = 32\ 200\ N$. Natomiast współczynnik $\overline{\omega}_M$ prędkości siłownika jest stosunkiem prędkości v_M tłoczyska do prędkości nominalnej wynoszącej $v_{Mn} = 0,4$ m/s.

Istnieją możliwości zmniejszania strat energetycznych w elementach układu o sterowaniu proporcjonalnym (w pompie, w zespole sterowania dławieniowego i w silniku hydraulicznym, szczególnie w silniku liniowym), a więc możliwości podwyższania sprawności energetycznej układu z rozdzielaczem dławiącym.

Układ hydrauliczny napędu i sterowania proporcjonalnego silnika hydraulicznego liniowego może być zasilany pompą o stałej wydajności współpracującą z zaworem przelewowym stabilizującym ciśnienie zasilania rozdzielacza proporcjonalnego na poziomie ciśnienia nominalnego (rys. 1), bądź pompą współpracującą z zaworem przelewowym sterowanym ciśnieniem na dopływie do odbiornika. Układ zmiennociśnieniowy p=var (rys. 2) umożliwia obniżenie strat w pompie, w zespole sterowania i w silniku hydraulicznym liniowym [Paszota 2005].

W układzie zmiennociśnieniowym p=var można poważnie obniżyć strukturalne straty ciśnieniowe i objętościowe w zespole sterowania dławieniowego, straty mechaniczne w siłowniku i pompie oraz straty objętościowe w pompie. Opis matematyczny strat i sprawności przedstawiono w pracach [Paszota 1999, 2005; Skorek 2008].

Struktura zmiennociśnieniowa p=var reprezentuje układ z pompą o stałej wydajności, współpracującą z zaworem przelewowym sterowanym ciśnieniem zasilania siłownika (rys. 2). Jest rozwiązaniem korzystnym z punktu widzenia sprawności energetycznej zarówno samego siłownika, jak i pompy oraz całego układu sterowania. Struktura zmiennociśnieniowa p=var z zaworem przelewowym, sterowanym SPS aktualnym ciśnieniem odpływu rozdzielacza do komory dopływowej siłownika, pozwala na dostosowanie poziomu ciśnienia w przewodzie tłocznym pompy do panującego obciążenia siłownika tak, że ogranicza stratę ciśnienia w szczelinie odpływu cieczy roboczej rozdzielacza do zbiornika. Dodatkowo układ ten utrzymuje stałą prędkość tłoka niezależną od obciążenia. Jest to efektem utrzymywania praktycznie stałego spadku ciśnienia Δp_{DE1} w szczelinie dławiącej rozdzielacza proporcjonalnego [Paszota 2001; Skorek 2014].

Rys. 2. Schemat układu z rozdzielaczem proporcjonalnym zasilanym pompą o stałej wydajności współpracującą z zaworem przelewowym sterowanym w systemie zmiennego ciśnienia – p=var

Badane struktury pracowały przy tych samych parametrach pracy silnika hydraulicznego liniowego, a więc przy jego obciążeniu F_M i prędkości v_M . W celu uzyskania stałej prędkości niezależnie od obciążenia siłownika ingerowano w nastawę rozdzielacza proporcjonalnego.

Porównano tu wielkości mocy ΔP poszczególnych strat, wynikających z zastosowanej struktury sterowania prędkości silnika hydraulicznego liniowego, jak i mocy P_{Pc} pobieranej (konsumowanej) przez pompę od napędzającego ją silnika elektrycznego, mocy koniecznej do zapewnienia wymaganej niezmienionej wielkości $P_{Mu} = F_M \cdot v_M$ użytecznej, napędzanego pompą, silnika hydraulicznego liniowego.

W badanych układach zostały użyte następujące elementy:

- pompa z wychylnym wirnikiem HYDROMATIC typu A7.VSO.58DR, pracująca przy stałej wydajności $Q_{Pt} = 0,000805 \text{ m}^3 \text{s}^{-1}$ (48,30 dm³min⁻¹);
- rozdzielacz proporcjonalny REXROTH typu 4WRA10E60-21/G24N9K4, z identycznymi szczelinami dławiącymi f_{DE1} = f_{DE2};
- siłownik dwutłoczyskowy HYDROSTER typu CD-63/36x500, średnica cylindra D = 63 mm i średnica tłoczyska d = 36 mm;
- zawór przelewowy REXROTH typu DBW10A3-52/315XU GE 62 4N9K4;
- zawór przelewowy sterowany REXROTH typu ZDC10PT-23/XM (tylko w układzie zmiennociśnieniowym p=var).

Ciśnienie nominalne występujące w badanym układzie wynosiło $p_n = 16$ MPa, olej hydrauliczny Total Azola 46 o lepkości kinematycznej $v = 35 \text{ mm}^2 \text{s}^{-1}$ (przy temperaturze $\vartheta = 43^{\circ}$ C) i gęstości $\rho = 873,3 \text{ kgm}^{-3}$.

2. MOC STRAT MECHANICZNYCH W SIŁOWNIKU W UKŁADACH p=cte, p=var

Rysunek 3 przedstawia wykres zależności mocy ΔP_{Mm} strat mechanicznych w siłowniku w układzie stałociśnieniowym (p=cte) i zmiennociśnieniowym (p=var) od współczynnika \overline{M}_M obciążenia przy różnych współczynnikach $\overline{\omega}_M$ prędkości siłownika [Skorek 2008].

Rys. 3. Zależność mocy ΔP_{Mm} strat mechanicznych w siłowniku w układzie stałociśnieniowym (p=cte) i zmiennociśnieniowym (p=var) od współczynnika \overline{M}_{M} obciążenia przy różnych współczynnikach $\overline{\omega}_{M}$ prędkości siłownika

Fig. 3. Dependence of power ΔP_{Mm} of mechanical losses in hydraulic cylinder in constant pressure system (p = cte) and variable pressure system (p = var) from the load coefficient \overline{M}_{M} at different cylinder speed coefficients $\overline{\omega}_{M}$

Moc ΔP_{Mm} strat mechanicznych w siłowniku maleje po zastąpieniu układu p=cte układem p=var. Przy współczynniku $\overline{M}_M = 0$ obciążenia oraz współczynniku $\overline{\omega}_M = 0,875$ prędkości siłownika moc tych strat obniża się z około 350 W do blisko 84 W, a więc około 4,2-krotnie. Moce ΔP_{Mm} strat mechanicznych w siłowniku w obu układach wyrównują się w strefie maksymalnych obciążeń (maksymalnych wartości \overline{M}_M) siłownika, czyli w strefie, w której układ p=var zaczyna pracować jako układ p=cte. Wielkość ΔP_{Mm} strat mechanicznych w siłowniku jest wówczas stosunkowo mała – poniżej 100 W [Skorek 2008].

W badanym siłowniku moc strat objętościowych ΔP_{Mv} i ciśnieniowych ΔP_{Mp} przyjęto jako równe zeru, ponieważ zastosowane uszczelnienia eliminują przecieki (czyli $Q_{Mv} = 0$), a opory przepływu (straty ciśnienia) Δp_{Mp1} i Δp_{Mp2} w kanale dopływowym i odpływowym są pomijalne.

3. MOC STRUKTURALNYCH STRAT CIŚNIENIOWYCH W UKŁADACH p=cte, p=var

Na rysunku 4 pokazano moc Δp_{stp} strat strukturalnych ciśnieniowych w zespole sterowania dławieniowego – rozdzielaczu, określonych w funkcji współczynnika \overline{M}_{M} obciążenia silnika przy ustalonych prędkościach v_m siłownika, czyli przy ustalonych współczynnikach $\overline{\omega}_{M}$ prędkości w układzie p=cte i p=var [Skorek 2008].

Po zastąpieniu układu p=cte układem p=var widoczne jest obniżenie mocy ΔP_{stp} strat strukturalnych ciśnieniowych, występujących w rozdzielaczu proporcjonalnym.

Przy współczynniku $\overline{M}_{M} = 0$ obciążenia oraz współczynniku $\overline{\omega}_{M} = 0,875$ ($v_{M} = 0,350$ m/s) prędkości siłownika moc tych strat obniża się z około 9800 W do około 1300 W, a więc 7,5-krotnie. Moce ΔP_{stp} strukturalnych strat ciśnieniowych w obu układach wyrównują się w strefie maksymalnych obciążeń siłownika (maksymalnych wartości \overline{M}_{M}), czyli w strefie, w której układ p=var pracuje jak układ p=cte. Wielkość ΔP_{stp} strukturalnych strat ciśnieniowych w obu układach jest wówczas stosunkowo mała – poniżej 2300 W.

Moc ΔP_{stp} strukturalnych strat ciśnieniowych w rozdzielaczu, która jest związana z przepływem strumienia Q_M przez rozdzielacz, wynika ze struktury zasilania. W przypadku układu p=cte wymusza się dużo wyższy poziom mocy w strumieniu wpływającym do rozdzielacza i w efekcie dużo większe straty niż w układzie p=var. Spowodowane jest to praktycznie stałą wartością ciśnienia w przewodzie tłocznym pompy, ponieważ pompa pracuje w układzie stałociśnieniowym przy ciśnieniu nominalnym $p_n = 16$ MPa.

Rys. 4. Zależność mocy ΔP_{stp} strat strukturalnych ciśnieniowych (w rozdzielaczu proporcjonalnym) w układzie stałociśnieniowym (p=cte) i zmiennociśnieniowym (p=var) od współczynnika \overline{M}_{M} obciążenia przy różnych współczynnikach $\overline{\omega}_{M}$ prędkości siłownika

Przy rosnącej prędkości cieczy płynącej do siłownika, rośnie proporcjonalnie jego prędkość. Przy zmianie prędkości siłownika od 0,025 do 0,35 m/s podział strumienia cieczy tłoczonej przez pompę na strumień płynący poprzez zawór przelewowy i na strumień płynący poprzez rozdzielacz dławiący zmienia się. Jeżeli np. rośnie natężenie strumienia płynącego przez rozdzielacz dławiący, a sprawność strukturalna ciśnieniowa jest stosunkiem mocy cieczy za zespołem sterowania dławieniowego do mocy cieczy przed rozdzielaczem, to moc za rozdzielaczem

rośnie proporcjonalnie do natężenia strumienia skierowanego do siłownika. Podobnie, z punktu widzenia natężenia strumienia, wzrasta moc cieczy bezpośrednio przed rozdzielaczem, ale przed rozdzielaczem maleje jednocześnie ciśnienie związane z tym, że rośnie strumień cieczy między pompą a rozdzielaczem w tym przewodzie, a przy rosnącym natężeniu tego strumienia maleje ciśnienie cieczy przed rozdzielaczem. Jeżeli więc wzrasta natężenie strumienia skierowanego przez rozdzielacz do siłownika, to maleje również w związku z tym rosnącym natężeniem strumienia poziom ciśnienia bezpośrednio przed rozdzielaczem w stosunku do ciśnienia stabilizowanego zaworem przelewowym SP i SPS, ponieważ w przewodzie łączącym pompę z rozdzielaczem występują opory. Jeżeli opory w przewodzie rosną, to zmniejsza się jednocześnie o ich wartość poziom ciśnienia przed rozdzielaczem.

4. MOC STRUKTURALNYCH STRAT OBJĘTOŚCIOWYCH W UKŁADACH p=cte, p=var

Moc ΔP_{stv} strat strukturalnych objętościowych (rys. 5), występujących w zaworze przelewowym SP (układ p=cte) bądź w zaworze przelewowym sterowanym SPS i w zaworze przelewowym SP (układ p=var), maleje, po zastąpieniu układu p=cte układem p=var, w zakresie mniejszych wartości współczynnika obciążenia siłownika [Skorek 2008].

Jednakże obniżenie mocy tych strat nie jest tak wyraźne jak w przypadku mocy ΔP_{stp} strat strukturalnych ciśnieniowych (rys. 4). Przy współczynniku $\overline{M}_{M} = 0$ obciążenia oraz współczynniku $\overline{\omega}_{M} = 0,063$ ($v_{M} = 0,025$ m/s) prędkości siłownika, moc ΔP_{stv} strukturalnych strat objętościowych obniża się z około 12 000 W do blisko 2400 W, a więc 5-krotnie. Moce ΔP_{stv} strukturalnych strat objętościowych w obu układach wyrównują się w strefie maksymalnych obciążeń siłownika (maksymalnych wartości \overline{M}_{M}) czyli w strefie pracy układu p=var jako układu p=cte. Jednakże wówczas jednakowa moc ΔP_{stv} strat strukturalnych objętościowych w obu układach jest największa, dochodząc, przy $\overline{\omega}_{M} = 0,063$, do 12 000 W.

W strefie maksymalnego współczynnika \overline{M}_{M} obciążenia i przy małym z kolei współczynniku $\overline{\omega}_{M}$ prędkości siłownika, moc ΔP_{stv} strat strukturalnych objętościowych jest, jak już wspomniano, największa, ponieważ traci się wtedy prawie całą moc pompy, pracującej przy ciśnieniu nominalnym p_n , w zaworze przelewowym (w przypadku układu p=cte) lub w zaworze przelewowym sterowanym i zaworze przelewowym (w przypadku układu p=var).

 $\mathsf{Moc}\, \Delta \! P_{\mathsf{stv}} \; \mathsf{strat} \; \mathsf{strukturalnych} \; \mathsf{objętościowych} \; (\mathsf{w} \; \mathsf{zaworze} \; \mathsf{przelewowym} \; \mathsf{lub} \; \mathsf{w} \; \mathsf{zaworze} \; \mathsf{przelewowym} \; \mathsf{sterowanym})$

5. MOC STRAT STRUKTURALNYCH W UKŁADACH p=cte, p=var

Moc ΔP_{st} strat strukturalnych jest sumą mocy ΔP_{stp} strukturalnych strat ciśnieniowych w rozdzielaczu proporcjonalnym i mocy ΔP_{stv} strukturalnych strat objętościowych w zaworze przelewowym bądź w zaworze przelewowym sterowanym:

$$\Delta P_{\rm st} = \Delta P_{\rm stp} + \Delta P_{\rm stv} \tag{2}$$

Na rysunku 6 przedstawiono wykres mocy ΔP_{st} strat strukturalnych w układach p=cte i p=var [Skorek 2008].

Rys. 6. Zależność mocy ΔP_{st} strat strukturalnych w zespole sterowania dławieniowego (suma mocy ΔP_{stp} strukturalnych strat ciśnieniowych w rozdzielaczu proporcjonalnym oraz mocy ΔP_{stv} strukturalnych strat objętościowych w zaworze przelewowym i w zaworze przelewowym sterowanym) w układzie stałociśnieniowym (p=cte) i zmiennociśnieniowym (p=var) od współczynnika \overline{M}_M obciążenia przy różnych współczynnikach $\overline{\omega}_M$ prędkości siłownika

Fig. 6. Power dependence ΔP_{st} of structural losses in the throttle control unit (sum of power ΔP_{stp} of structural pressure losses in the proportional valve and power ΔP_{stv} of the structural volume losses in the overflow valve and in the control overflow valve) in constant pressure system (p=cte) and variable pressure system (p=var) from the load coefficient \overline{M}_{M}

at different speed coefficients $\overline{\omega}_{_{\!\mathrm{M}}}$ of the hydraulic cylinder

Moc ΔP_{st} strat strukturalnych w układzie p=cte, przy ustalonych wartościach współczynnika $\overline{\omega}_M$ prędkości siłownika, maleje wraz ze wzrostem obciążenia.

Jak już wspomniano, moc ΔP_{st} strat strukturalnych jest sumą mocy ΔP_{stp} strat strukturalnych ciśnieniowych oraz mocy ΔP_{stv} strat strukturalnych objętościowych. Biorąc więc pod uwagę rysunek 4, na którym linie mocy ΔP_{stp} mają tendencję spadkową, oraz rysunek 5, na którym linie mocy ΔP_{stv} przyjmują stałe wartości w całym zakresie wartości współczynnika \overline{M}_{M} obciążenia siłownika, moc ΔP_{st} strat strukturalnych układu p=cte maleje ze wzrostem obciążenia (rys. 6).

Przy współczynniku $\overline{M}_{M} = 0$ obciążenia oraz współczynniku $\overline{\omega}_{M} = 0,063$ ($v_{M} = 0,025$ m/s) prędkości siłownika, moc ΔP_{st} w układzie p=cte osiąga największą wartość równą $\Delta P_{st} = 12700$ W. Przy tej samej wartości prędkości i przy maksymalnym współczynniku \overline{M}_{M} obciążenia równym $\overline{M}_{M} = 0,988$ moc ΔP_{st} strat strukturalnych w układzie p=cte spada do $\Delta P_{st} = 12000$ W. Przy maksymalnych zaś wartościach prędkości i obciążenia siłownika, ΔP_{st} układu p=cte przyjmuje wartość najmniejszą równą $\Delta P_{st} = 3815$ W. Ten ponad 3,3-krotny spadek ΔP_{st} związany jest głównie z malejącym spadkiem Δp_{DE} ciśnienia w rozdzielaczu oraz z malejącym natężeniem Q_0 strumienia skierowanego do zbiornika przez zawór przelewowy.

Po zastąpieniu układu p=cte układem p=var widoczne jest znakomite obniżenie mocy ΔP_{st} strat strukturalnych. Wiąże się to z obniżonym ciśnieniem p_{P2} w przewodzie tłocznym pompy, występującym przy niższych współczynnikach obciążenia siłownika.

Przy współczynniku $\overline{M}_{M} = 0$ obciążenia oraz współczynniku $\overline{\omega}_{M} = 0,063$ ($v_{M} = 0,025$ m/s) prędkości siłownika, moc strat strukturalnych obniża się z $\Delta P_{st} =$ = 12 700 W (p=cte) do około $\Delta P_{st} = 2400$ W (p=var), a więc 5,3-krotnie. Moce ΔP_{st} strat strukturalnych w obu układach wyrównują się w strefie maksymalnych obciążeń siłownika (maksymalnych wartości \overline{M}_{M}) czyli w strefie, w której układ p=var pracuje jak układ p=cte. Wówczas wielkość ΔP_{st} strat strukturalnych w obu układach, przy minimalnym współczynniku $\overline{\omega}_{M} = 0,063$ prędkości siłownika, jest wysoka i wynosi $\Delta P_{st} = 12\ 000$ W.

W układzie p=var, gdy siłownik pracuje przy dużym współczynniku prędkości równym $\overline{\omega}_{M} = 0.875 \ (v_{M} = 0.350 \text{ m/s}), \text{ moc } \Delta P_{\text{st}}$ strat strukturalnych wyraźnie maleje, zmieniając się od $\Delta P_{\text{st}} = 1780 \text{ W przy } \overline{M}_{M} = 0 \text{ do } \Delta P_{\text{st}} = 3800 \text{ W przy } \overline{\omega}_{M} = 0.775.$

Reasumując, korzyść z zastąpienia struktury p=cte strukturą p=var jest najbardziej widoczna w przypadku przedstawienia mocy ΔP_{st} strat strukturalnych w badanych układach na wykresie zbiorczym tych strat (rys. 6). Wynika z niego, że ΔP_{st} struktury p=cte maleje zarówno ze wzrostem prędkości, jak i ze wzrostem obciążenia siłownika. W układzie p=var ΔP_{st} rośnie ze wzrostem obciążenia oraz maleje ze wzrostem prędkości.

6. ZALEŻNOŚĆ MOCY STRAT W ELEMENTACH UKŁADU ORAZ MOCY ZAPOTRZEBOWANEJ PRZEZ POMPĘ OD MOCY UŻYTECZNEJ SIŁOWNIKA W UKŁADACH p=cte, p=var

Przedstawione na rysunku 7 wyniki badań umożliwiają porównanie zależności wielkości mocy ΔP strat energetycznych (wyrażonych w watach [W]) występujących w elementach oraz mocy P_{Pc} pobieranej przez pompę od mocy P_{Mu} użytecznej siłownika sterowanego w układzie stałociśnieniowym p=cte i zmiennociśnieniowym p=var, przy współczynniku prędkości siłownika $\overline{\omega}_{\rm M} = 0,875$ ($v_M = 0,350$ m/s).

Rys. 7. Zależność mocy ΔP strat w elementach układu oraz mocy P_{Pc} zapotrzebowanej przez pompę w układzie stałociśnieniowym (p=cte) i zmiennociśnieniowym (p=var) od współczynnika \overline{M}_M obciążenia przy współczynniku prędkości siłownika $\overline{\omega}_M = 0,875$ $(v_M = 0,35 \text{ m/s})$. Moc P_{Mu} użyteczna siłownika wynika z iloczynu aktualnego obciążenia F_M (\overline{M}_M) i aktualnej prędkości v_M ($\overline{\omega}_M$) siłownika, wymaganych przez napędzane siłownikiem urządzenie

Fig. 7. The power loss ΔP of the system components and the P_{Pc} power demanded by the pump by the constant pressure system (p =cte) and variable pressure system (p=var) from the load coefficient \overline{M}_{M} at the hydraulic cylinder speed coefficient $\overline{\omega}_{M}$ = 0.875 (v_{M} = 0,35 m/s); The useful power P_{Mu} of the hydraulic cylinder is resulted from the product of the current F_{M} load (\overline{M}_{M}) and the actual speed v_{M} ($\overline{\omega}_{M}$) of the cylinder required by the driven device

Z wykresu na rysunku 7 wynika, że przebiegi mocy P_{Pc} pobieranej przez pompę (przy jednakowych przebiegach mocy P_{Mu} użytecznej siłownika) są różne dla dwóch badanych układów. W układzie stałociśnieniowym moc P_{Pc} jest stała w całym zakresie zmiany współczynnika obciążenia i wynosi 13 380 W, natomiast w przypadku układu zmiennociśnieniowego moc P_{Pc} zmienia się, w zależności od obciążenia siłownika, w zakresie od 3200 W przy $\overline{M}_{M} = 0$ do 13 380 W przy $\overline{M}_{M} =$ 0,875. Moc P_{Mu} użyteczna siłownika rośnie w całym zakresie współczynnika obciążenia, jest równa zeru przy $\overline{M}_{M} = 0$ i 9900 W przy $\overline{M}_{M} = 0,875$.

7. PODSUMOWANIE

W artykule porównano moce strat energetycznych dwóch układów – p=cte i p=var oraz pokazano, jak przebiegają linie mocy P_{Mu} użytecznej siłownika, linie mocy ΔP strat energetycznych w elementach i linie mocy P_{Pc} , pobieranej przez pompę od napędzającego ją silnika. Przedstawiono także zyski energetyczne związane z wprowadzeniem zasilania przy zmiennym ciśnieniu p=var w porównaniu z układem stałociśnieniowym p=cte.

Przedstawiono wpływ mocy P_{Mu} na moc P_{Pc} w rozważanych układach, jak i wpływ na P_{Pc} mocy ΔP strat w poszczególnych elementach. Chwilowa moc P_{Mu} użyteczna siłownika, która jest określona iloczynem siły F_M i prędkości v_M tłoczyska siłownika, jest niezależna od wszystkich strat. Do mocy użytecznej P_{Mu} dochodzi moc ΔP_{Mm} strat mechanicznych w siłowniku, moc ΔP_C strat w przewodach, moc ΔP_{stv} strukturalnych strat objętościowych i ΔP_{stp} strukturalnych strat ciśnieniowych, które są związane ze sterowaniem dławieniowym, oraz moce strat w pompie: ΔP_{Pp} ciśnieniowe, ΔP_{Pv} objętościowe i ΔP_{Pm} mechaniczne. W efekcie sumy mocy P_{Mu} i mocy ΔP wszystkich strat w układzie uzyskuje się chwilową wartość mocy P_{Pc} , której wymaga pompa od napędzającego ją silnika.

Przy niezmienionym obciążeniu F_M siłownika, a jego zwiększanej prędkości v_M , zwiększa się moc ΔP_{stp} strat strukturalnych ciśnieniowych, ponieważ natężenie strumienia płynącego przez rozdzielacz proporcjonalny się zwiększa (rys. 4 i 7).

Zmiana struktury z p=cte na p=var, przy tej samej mocy użytecznej P_{Mu} układu, skutkuje poważnym zmniejszeniem mocy ΔP_{st} strat strukturalnych (rys. 6 i 7). Jednocześnie, przy tej samej prędkości v_M siłownika, w strukturze p=var zmniejszają: się moc ΔP_{Pv} strat objętościowych w pompie, moc ΔP_{Pm} strat mechanicznych w pompie, natomiast rośnie nieco moc ΔP_{Pp} strat ciśnieniowych w pompie.

Można zaobserwować przy mniejszych wartościach obciążenia siłownika poważne zmniejszenie mocy ΔP_{st} strat strukturalnych i mocy ΔP_{Pv} strat objętościowych w pompie w układzie p=var w stosunku do układu p=cte. Jest to związane z mniejszym ciśnieniem p_{P2} w układzie p=var, ponieważ układ z zaworem przelewowym sterowanym aktualnym ciśnieniem p_2 odpływu rozdzielacza do komory dopływowej siłownika pozwala na dostosowanie poziomu ciśnienia p_{P2} w przewodzie tłocznym pompy do panującego obciążenia siłownika czyli ciśnienia p_2 tak, że ogranicza stratę Δp_{DE1} ciśnienia w szczelinie f_{DE1} rozdzielacza i jednocześnie stratę Δp_{DE2} ciśnienia w szczelinie f_{DE2} rozdzielacza. Spadek Δp_{DE1} ciśnienia w rozdzielaczu jest zmniejszony w porównaniu ze spadkiem Δp_{DE1} w strukturze p=cte. W związku z niższym ciśnieniem p_{P2} poważnemu obniżeniu uległa moc P_{Pc} pobierana przez pompę (rys. 7).

Przy małej prędkości v_M i małym obciążeniu F_M siłownika można zauważyć, pomimo zastosowania w układach pompy o stałej wydajności, poważne zmniejszenie mocy ΔP_{stp} strukturalnych strat ciśnieniowych, ale również znakomite obniżenie mocy ΔP_{stv} strukturalnych strat objętościowych w układzie p=var w stosunku do układu p=cte. Chociaż natężenie Q_0 strumienia płynącego przez zawór przelewowy do zbiornika przy tej samej prędkości v_M siłownika jest w porównywanych układach praktycznie takie samo, to iloczyn mniejszego ciśnienia p_{P2} tłoczenia pompy i natężenia Q_0 , będącego różnicą Q_P-Q_M , daje mniejszą moc ΔP_{stv} strukturalnych strat objętościowych w układzie p=var (rys. 4 i 5).

Moc ΔP_{Mm} strat mechanicznych w siłowniku zmienia się w zależności od tego, jakie panuje ciśnienie w jego komorach. W układzie zmiennociśnieniowym moc ΔP_{Mm} strat mechanicznych jest mniejsza niż w układzie p=cte, ponieważ mniejsza jest w siłowniku siła F_{Mm} strat tarcia (rys. 3).

W przypadku powiększania prędkości v_M i obciążenia F_M siłownika odpowiednio do wartości maksymalnych v_{Mmax} i F_{Mmax} minimalizuje się moc ΔP_{stv} strat strukturalnych objętościowych i moc ΔP_{stp} strat strukturalnych ciśnieniowych, związanych z zespołem sterowania dławieniowego.

W przypadku, gdy siłownik się nie przemieszcza (gdy jego prędkość równa się zeru, $v_M = 0$), a pompa pracuje, moc P_{Mu} użyteczna siłownika równa jest zeru; w układzie występują następujące moce strat: moc ΔP_{stv} strukturalnych strat objętościowych oraz moce strat w pompie: ΔP_{Pp} ciśnieniowych, ΔP_{Pv} objętościowych i ΔP_{Pm} mechanicznych, których suma stanowi moc P_{Pc} pobieraną wówczas przez pompę. Przy mniejszych obciążeniach F_M zatrzymanego siłownika moc P_{Pc} pobierana przez pompę w układzie p=var jest mniejsza od mocy P_{Pc} w układzie p=cte.

Układ zmiennociśnieniowy zdecydowanie redukuje w porównaniu z układem stałociśnieniowym moc strukturalnych strat ciśnieniowych w zespole sterowania dławieniowego, występujących w okresie obciążenia silnika hydraulicznego liniowego zmniejszającym się obciążeniem zewnętrznym. Zmniejsza się również moc strukturalnych strat objętościowych w zaworze przelewowym sterowanym, mimo że natężenie strumienia strat objętościowych w tym zaworze nieco rośnie w porównaniu z układem stałociśnieniowym z powodu wyższej wydajności pompy. W pompie, z racji jej pracy w układzie zmiennociśnieniowym, następuje niewielkie powiększenie mocy strat ciśnieniowych, zmniejszenie mocy strat objętościowych, a także zmniejszenie mocy strat mechanicznych. W efekcie, w okresie obciążenia silnika hydraulicznego liniowego niewielką siłą następuje również wyraźne zmniejszenie mocy pobieranej przez pompę od napędzającego ją silnika elektrycznego, co, przy niezmienionej mocy użytecznej silnika hydraulicznego liniowego, wyraźnie podwyższa sprawność energetyczną całego układu w porównaniu ze sprawnością układu stałociśnieniowego.

Dwa porównywane układy mogą osiągnąć, w okresie maksymalnego obciążenia i maksymalnej prędkości, tę samą maksymalną sprawność całkowitą. Układ zmiennociśnieniowy staje się wtedy układem stałociśnieniowym, a więc warunki pracy obu układów stają się takie same.

LITERATURA

- Paszota, Z., 1999, Studium mocy i sprawności energetycznej silnika hydraulicznego liniowego silownika, IX Konferencja "Badanie, konstrukcja, wytwarzanie, eksploatacja układów hydraulicznych", Zakopane, 23–25 września, Katedra Inżynierii Produkcji Politechniki Opolskiej, Centrum Mechanizacji Górnictwa "Komag", Gliwice.
- Paszota, Z., 2000, Hydrauliczny układ indywidualny z pompą o stałej wydajności i ze sterowaniem proporcjonalnym siłownika model strat i sprawności energetycznej, materiały VI Seminarium "Napędy i sterowanie'2000", Politechnika Gdańska, Gdańska 23–25.02.
- Paszota, Z., 2000, Układ hydrauliczny z pompą o stałej wydajności i ze sterowaniem proporcjonalnym siłownika – sprawność energetyczna przy maksymalnym przekroju dławiącym rozdzielacza zasilanego pompą bezpośrednio, w: Badanie, konstrukcja, wytwarzanie i eksploatacja układów hydraulicznych, Biblioteka "Cylinder", Centrum Mechanizacji Górnictwa "Komag", Gliwice.
- Paszota, Z., 2001, Hydrauliczne sterowanie proporcjonalne siłownika z zaworem przelewowym zmiennego ciśnienia – model sprawności energetycznej układu, w: Badanie, konstrukcja, wytwarzanie i eksploatacja układów hydraulicznych, Biblioteka "Cylinder", Centrum Mechanizacji Górnictwa "Komag", Gliwice.
- Paszota, Z., 2005, Model strat i sprawności energetycznej układu hydraulicznego o sterowaniu proporcjonalnym siłownika zasilanego pompą o stałej wydajności w systemie zmiennego ciśnienia, w: Badanie, konstrukcja, wytwarzanie i eksploatacja układów hydraulicznych, Biblioteka "Cylinder", Centrum Mechanizacji Górnictwa "Komag", Gliwice.
- Skorek, G., 2008, Charakterystyki energetyczne układu hydraulicznego o sterowaniu proporcjonalnym siłownika zasilanego pompą o stałej wydajności w systemie stałego i zmiennego ciśnienia, praca doktorska, Gdańsk.
- Skorek, G., 2013, *Sprawność energetyczna napędu hydrostatycznego*, Hydraulika i Pneumatyka, nr 6, s. 7–11.
- Skorek, G., 2014, Układy hydrostatyczne ze sterowaniem dławieniowym, Hydraulika i Pneumatyka, nr 5, s. 16–21.