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SOME RELATIONSHIPS BETWEEN EFFECTIVE  
AND LEFTOVER SERVICE CURVES 

Network service curve plays a fundamental role in the techniques called network calculus. For 
example, it is very useful in analysis of admission control algorithms and scheduling procedures.  
Its basic form is assumed to be time-invariant and independent of cross traffic. However, in practice, 
when cross traffic must be taken into account, another form of this curve has to be used. It is called 
leftover service curve that depends upon the cross traffic intensity and indicates how much bandwidth 
is actually left over for through traffic. Outside the field of network calculus, a service curve was also 
devised that depends upon cross traffic, similarly as the leftover service curve. It was named  
∈-effective service curve and proved to be useful for ad hoc networks. In this paper, we discuss the 
relationships existing between the aforementioned service curves. In particular, we show that under 
some assumptions the ∈-effective service curve can be viewed as the result of interpolation of the 
leftover service curve obtained in measurements. The discussions are provided with the relevant 
derivations. 
Keywords: Network calculus, relationships between effective and leftover service curves. 

INTRODUCTION 

 Network calculus [1, 2, 3] stands for a family of calculation tools that are an 
alternative to the methods using queueing theory for solving network performance 
problems. In this approach, the so-called network service curve [3, 4] plays  
a crucial role. This curve is used in finding solutions to a variety of sometimes 
difficult problems regarding, for example, network admission and scheduling 
algorithms. In the literature, two variants of the network service curve are 
considered, deterministic and stochastic ones. They are used in the deterministic 
and stochastic calculi, respectively.  
 In this paper, we exploit the first one. Its basic form is time-invariant and 
independent of cross traffic. However, because in many cases occurring in practice, 
the influence of cross traffic must be taken into account another form of it is used. 
It is then named a leftover service curve [3] that varies according to the cross 
traffic intensity changes and indicates how much bandwidth is actually left over in 
a network (or a network node) for servicing the through traffic. As such, it becomes 
inherently time-dependent. Then, in order to avoid calculation problems, an 
alternative function in form of the deterministic time-invariant leftover service 
curve is often used. And this does not lead to poor results; for more details of this 
approach see, for example [3].  
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 Applying a little bit different techniques than those used in network calculus, 
Valaee and Li in [5] constructed another service curve that depends upon the cross 
traffic. It was named by them the ∈-effective service curve.  
 Fidler in [3] explains the above curve as that which comes out from a certain 
optimization task formulated in the max-plus algebra [2]. One obtains then, as 
solutions, the successive times of servicing data portions consisting of k 
consecutive packets with k changing from, say, 1 to K. But, a drawback related 
with these solutions is that they depend upon an auxiliary parameter. The set of 
servicing times obtained in such a way is used afterwards to get an inverted 
function. And this inverted function forms ∈-effective service curve under 
assumption that the so-called small parameter ∈ (it will be defined precisely in the 
next section) equals zero. For more details, see [3].  
 Here, we present another interpretation of the ∈-effective service devised by 
Valaee and Li [5]. It seems to be more convincing than that presented in [3]. In our 
interpretation, we show that the ∈-effective service curve can be treated as a result 
of interpolation of the leftover service curve using some data. These data, which 
one can get by carrying out computer simulations or by performing measurements 
in a network, regard the values of waiting times of data portions consisting of k 
consecutive packets to be serviced (with k changing from, say, 1 to K, as above). 
The theoretical results presented in this paper are illustrated by showing some 
outcomes from simulations performed with the use of NS3 simulator. They show 
how servicing the through traffic depends upon the cross traffic at a given network 
node or a network processing device (as for example a router). Moreover, we 
observe here, similarly as in [5], that the ∈-effective service curves achieved  
in simulations do not differ much from the straight lines (after leaving an initial 
range).  

1. NOTIONS OF LEFTOVER AND EFFECTIVE SERVICE CURVES 

 Using network calculus terminology [2, 3], we can relate network traffic flows 
by exploiting the notion of a service curve. In this framework, the traffic flows are 
expressed with the use of a measure called the cumulative traffic [2, 3]. This is  
a number of bits (or packets) that enters or leaves a traffic system or device in the 
period from 0 to t. So it is a function of time and it can be viewed as belonging to 
the function class F  [2]. Note that these are such functions that are wide-sense 
increasing and have values identically equal to zero for negative times (i.e. for 

0<t ), where the property of being wide-sense increasing means that  
a function ( )f t  possesses this property if and only if ( ) ( )f f tτ ≤  holds for all tτ ≤ . 
 We start our derivations in this section with recalling the notion of the strict 
service curve [2, 3]. To this end, consider a traffic system with the input and output 
cumulative traffics denoted, respectively, by ( )A t  and ( )D t . The relation between 
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them can be expressed for all the times 0 tτ≤ ≤  falling into a continuously 
backlogged period as [2, 3] 

 ( ) ( ) ( )D t D S tτ τ≥ + − , (1) 

where the function of time ( )S t  means the so-called strict service curve [2, 3]. 
Note that in the literature one assumes this function to belong to the -F class of 
functions, too. Furthermore, parameter τ  in (1) means the beginning of the last 
backlogged period which occurred before t. In other words, we assume here that 
the system considered was fully empty directly beforeτ . That is it contained then 
no through as well as no cross traffic. 
 It was proved [2] that if a traffic system possesses the strict service curve then 
it has also the conventional service curve property. This means that the following 
inequality [2, 3] 

 ( ) ( )
0

( )( ) inf ( ) ( )
t

D t A S t A S t
τ

τ τ
≤ ≤

≥ ⊗ = + −  (2) 

holds with ( )S t  being the service curve that is identical with the strict service 
curve occurring in (1). In (2), the symbol ⊗  means the operation of min-plus 
convolution [2], [3]. Moreover, the symbol inf therein stands for the operation of 
finding infimum value, but ( )A t  means the cumulative traffic at the system’s input.  
 We assume here that the traffic at the system’s input consists of two 
components 

  ( ) ( ) ( )t cA t A t A t= + , (3a) 

where ( )tA t  means the input through traffic, but ( )cA t  is the input cross traffic. 
The latter one is that which after servicing leaves another system output (or outputs). 
Accordingly, ( )tD t  and ( )cD t  mean the output through traffic and the output 
cross traffic. That is we have 

 ( ) ( ) ( )t cD t D t D t= +  (3b) 

for the aggregated output traffic. 
 Substituting (3a) and (3b) into (1), and after rearranging the corresponding 
components, we obtain 

 ( ) ( ) ( ) ( ) ( )( )t t c cD t D S t D t Dτ τ τ≥ + − − −  (4) 

for all the times 0 tτ≤ ≤  falling into a continuously backlogged interval.  
In the next step, using the causality condition relating cD  with cA , i.e. 

( ) ( )c cD t A t≤ , and afterwards applying the envelope bound on cA , i.e. 

( ) ( ) ( )c c cA t A E tτ τ− ≤ − , in (4), we arrive at 
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 ( ) ( ) ( ) ( )t t cD t D S t E tτ τ τ≥ + − − − , (5) 

where ( )cE t  means an envelope [3, 4] of the input cross traffic in the system 
considered. Further, comparison of (5) with (1) shows that the function 

  ( ) ( ) ( )t cS t S t E t= −  (6) 

plays a kind of service curve for the through traffic at the system. For this, 
however, a slight modification of (6) is needed because of possibility of occurrence 
of the negative values of ( )tS t  for some times t . In order to ensure that all the 
values of a hypothetical service curve will be nonnegative, a function 

 ( ) ( ) ( )t cS t S t E t
+⎡ ⎤= −⎢ ⎥⎣ ⎦  (7) 

is used instead of that given by (6). For more explanation, see [3]. In [3], this 
function is named the leftover service curve. Further, the symbol ( )x t

+⎡ ⎤⎣ ⎦  in (7) 

stands for finding the maximum value in the set ( ){ },0x t  for each time instant. 

 The leftover service curve ( )tS t  given by (7) determines the amount of 
service that is left over by the cross traffic for the through traffic at a given system. 
In other words, it is cross-traffic dependent. It can retain the property of a strict 
service curve or do not retain, as shown in [3, 6]. Independently of this, we will call 
however in what follows a leftover service curve any one that is cross-traffic 
dependent. (It can be simply also named a cross-traffic dependent service curve).  
 In [5], another service curve, which depends upon the cross traffic, was 
defined. We can say that it is an experiment-oriented one because it uses data 
obtained by measuring the traffic in a real network or by generating the traffic in  
a simulated system and registering it in the system’s chosen nodes. These data are 
needed for the curve construction. More precisely, a batch of probing packets is 
sent at the system’s input in the presence of cross traffic. The probing packets 
constitute the through traffic. Generally, they are not serviced immediately, but 
must wait for some time; the lengths of waiting times depend upon the cross traffic 
intensity. Further, the waiting times (called also delays) are measured and, after 
releasing from a certain constant delay, are recorded. Assume that we apply  
a probing sequence consisting of K  consecutive packets. Then, the successive 
sums of the aforementioned waiting times can be expressed as 

 ( )

1

,    1,...,
k

k
i

i

w k K
=

Δ = =∑ , (8) 

where iw  means the waiting time of the i-th probing packet. Further, describe the 
summed delays also in a probabilistic way as 

  ( )( )( )inf Pr ,    1,...,k
kT k Kε τ τ ε= Δ > ≤ = , (9) 
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where ( )( )Pr k τ εΔ > ≤  stands for such a situation in which the probability of 

occurrence of ( )k τΔ >  is less than ε . Using the consecutive parameters kT ε  
calculated by applying (8) and (9), the so-called ∈-effective service curve ( )S tε  
can be defined [5] as a function consisting of K  segments described by 

 ( ) ( ) 1
1

1

, 1,  ,   1, 2,..., ,k
k k

k k

t TS t S t k k T t T k K
T T

∈
∈ ∈−

∈ ∈ −∈ ∈
−

−
= = + − ≤ ≤ =

−
 (10) 

with the index k denoting the k-th segment, and with the initial value of 0 0T ε = . 
Note further that the segment description ( ),S t kε  given by (10) with the index k 

changing from 1 to K is in fact also the description of the whole function ( )S tε . 

The traffic expressed by ( )S tε  is counted in packets. To express it in bits, ( )S tε  
must be simply multiplied by the packet length (in bits). In what follows, we 
denote this length by Bl  (assumed the packets are of the same length).  
 It is worth noting that the values of kT ε  in (9) can be estimated by the actual 

values of ( )kΔ . That is we can write 

 ( )0 ,    1,...,k
k kT T k Kε== ≅Δ = . (11) 

 The simplification given by (11) is important from the practical point of view 
because the probability functions ( )( )Pr k τΔ >  are often not known at all. But with 

the use of (11), estimation of the function (10) becomes easy.  
 Observe further that the summed delays defined by (8) or (9) are the 
characteristic points of the ∈-effective service curve ( )S tε  and change with the 
cross traffic intensity. Their values become larger with the cross traffic intensity 
increase. Looking at (10), we see that this has such an effect that the slopes of the 
straight lines of the segments of ( )S tε  are smaller. This causes the curve ( )S tε  to 
move nearer to the Ot axis.  
 Finally, it seems that the service curve ( )S tε  can approximate in some way the 
leftover service curve expressed by (7). We will consider this topic in the next section. 

2. EFFECTIVE SERVICE CURVE AS SOLUTION OF AN INTERPOLATION 
PROBLEM 

Here, we present interpretation of the ∈-effective service curve ( )S tε  as such 
a curve that is obtained by means of linear interpolation of a leftover service curve, 
not necessarily strict one. In this interpolation, the experimental data (obtained  
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by performing real measurements or carrying out appropriate traffic simulations) 
are used. To begin, let us approximate the function of the system’s input through 
traffic ( )tA t , consisting of a batch of K probing packets, similarly as in [8]. That is 
as shown in Fig. 1. 
 

0 t 

A t( t)

BK 

 

Fig. 1. The cumulative traffic function approximating the input through traffic At ( t ), 
consisting of a batch of K probing packets. 

  
 In Fig. 1, K BB K l= ⋅  means the total length in bits of the whole batch of K 
probing packets. Moreover, note that the function ( )tA t  in Fig. 1 is assumed to be 
right-continuous. 
 Assume now that the traffic system considered behaves approximately linearly 
when servicing the through traffic. That is we can write 

 

 ( ) ( )
0

( )( ) inf ( ) ( )t t t t t

t
D t A S t A S t

τ
τ τ

≤ ≤
≅ ⊗ = + − , (12) 

where the function ( )tS t  means now and in what follows any leftover service 
curve (i.e. a time-independent and cross-traffic dependent service curve) fulfilling 
(12). As we know from the previous section and the literature cited therein, the 
function given by (7) can play this role in many cases. 

 Further, consider such the times t for which the following holds. 

 ( )t
KS t B≤  (13) 

Applying ( )tA t  as given in Fig. 1 in (12) and analyzing then the inner expression 
on the right-hand side of (12), i.e. ( ) ( )t tA S tτ τ+ − , for the times 0 tτ≤ ≤ , we 
find easily that its minimal value equals ( )tS t  for each t for which (13) holds. So 
this results in 

 ( ) ( )t tD t S t≅ . (14) 
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 Note that (14), under the conditions of the scenario described above, can be 
also interpreted as 

 ( )( )t tS t D t= , (15) 

where ( )tS t  means an estimating function of the function ( )tS t . This estimating 

function for the range of times ( ) ( )
1

max0 t
Kt t S B

−
≤ ≤ = , where ( ) 1tS

−
 means the 

inverted function ( )tS t , is obtained as the output through traffic function ( )tD t . 
 Note however that we do not arrive at a continuous function ( )tD t  when 
working with the data taken from the real traffic measurements or computer 
simulations of real networks. This is because we do not have to do then with single 
bits, but with the whole packets. That is we register and record arrival and 
departure times of the data portions (consisting of bits), i.e. packets, as sketched for 

( )tD t  in Fig. 2. 
 

0 t

Dt(Tk)

BK

T1 T2 T3 TK .   .    .      .    .    .  
Fig. 2. Visualization of the departing times of packets building the cumulative output through 

traffic function Dt ( t )   
 

Using the pairs of discrete values ( ){ }, t
k kT D T  shown in Fig. 2, we can 

interpolate the other points of the curve ( )tD t  by using, for example, a linear 
interpolation formula having a general form 

 ( ) ( ) ( ) ( )( )
*

* * 1
1 1

1

k
k k k

k k

x xy x f x f x f x
x x

−
− −

−

−
= + −

−
, (16) 

where the value *x  lies on the Ox between the values 1kx −  and kx  (with 1k kx x −> ). 
Furthermore, ( )1kf x −  and ( )kf x  denote the values of the function ( )f x  at the 

points 1kx −  and kx , respectively. We assume that the pairs ( ){ }1 1,k kx f x− −  and 

( ){ },k kx f x  are known from the measurements (simulations). And ( )* *y x  is the 

interpolated value of the function ( )f x  at the point *x . 
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 Applying now (16) in our case, i.e. substituting in this expression *x t= , 
( ) ( )* * ty x D t= , 1 1k kx T− −= , k kx T= , ( ) ( )1 1 1t

k kf x D T k− −= = −  (what means that 

we count here the traffic in number of packets), ( ) ( )t
k kf x D T k= = , with the 

initial values 0 0 0x T= =  and ( ) ( )0 0 0tf x D T= = , we get 

 ( ) 1
1

1

1 ,    t k
k k

k k

t TD t k T t T
T T

ε ε−
−

−

−
= − + ≤ ≤

−
 (17) 

with k changing in the range 1,...,k K= . 
 Comparison of (10) with (17) shows that these expressions are identical. 
Hence, we can write 

 ( ) ( ) ( ) 1, ,  ,   1,...,t
k kD t S t S t k T t T k Kε ε

ε ε −= = ≤ ≤ = . (18) 

That is the so-called ∈-effective service curve ( )S tε  elaborated in [5] can be 
viewed as a solution of an interpolated problem as described above in this section. 
 The procedure described above of getting the linearly interpolated function 

( )tD t , which uses the data presented in Fig. 2, is illustrated in Fig. 3. 

0 t 

Dt(t)

BK

 
Fig. 3. Visualization of the interpolation process for getting  

the interpolated function Dt ( t )  

 And finally, relating (18) with (14), and (15), we can write 

 ( )( )tS t S tε= . (19) 

 Equation (19) states that the estimating function of the leftover service curve 
for the through traffic obtained in the linear interpolation process using the data 
gathered in measuring (simulation) of the departing through traffic (as described 
above) is equal to the so-called ∈-effective service curve devised in [5]. 
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3. SIMULATIONS WITH NS3 

For illustration, we present in this section some results of simulations carried 
out with the use of the network simulator NS3. These results were also presented 
by this author and his coworker in another paper [7] on applications of the leftover 
and ∈-effective service curves in admission control in ad hoc networks.  
The scenario modeled here was similar to that described in [5]. A network 
simulated had 25 mobile nodes placed on the area of 250 × 250 m2. Moreover, the 
MAC layer applied was defined according to the IEEE 802.11 standard with the 
CSMA/CA access procedure. Further, the simulations were performed for different 
intensities of the cross traffic. The data about the traffic in the respective nodes 
were registered and used afterwards to obtain the ∈-effective service curves. 
 Fig. 4 presents some of the results achieved. Note that the simulated curves 
are not here straight lines as in [5]. This difference will need to be clarified by 
carrying out further investigations. However, observe that the curves do not differ 
much from the straight lines outside the initial area (similarly as in the paper by 
Valaee and Li [5]). Note also that the time and cumulative traffic values on the 
axes in Fig. 4 are normalized. 
 

 
 
Fig. 4. The ∈-effective service curves obtained in simulations with the use of NS3 simulator 

for the through traffic in the absence or presence of the crossing traffic [7] 
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CONCLUSIONS 

The basic result achieved in this paper is that the estimating function of the 
leftover service curve for the through traffic, obtained in a linear interpolation 
process using the data gathered in measuring (simulation) of the departing through 
traffic (when the input through traffic consists of a sequence of probing packets 
according to a scenario devised in [5]), is equal to the so-called ∈-effective service 
curve [5]. 
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