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SOME  REMARKS  ON  PRACTICAL  ASPECTS  OF  THE  EFFECTIVE 

SERVICE  CURVE  USE  IN  AD  HOC  NETWORKS 

The so-called ∈-effective service curve has been thought out for the use in a distributed call 

admission procedure for wireless ad hoc networks. Its practical usefulness relies upon the fact that it 

can be constructed on-line exploiting the measured data, and modified accordingly, when the 

intensity of the cross traffic changes, allowing the call admission to be matched to the system actual 

traffic load. In this paper, we demonstrate that this curve can be approximated by system parametric 

service curve for through traffic, depending upon the intensity of system cross traffic, too. We show 

also that an expression published in the literature that describes the ∈-effective service must be 

corrected and its right form is given here. This form allows the correct interpretation of servicing the 

through traffic in absence of the cross traffic. Moreover, we demonstrate that the use of the so-called 

greedy pattern of probing packets can be interpreted approximately as applying the Dirac impulse to 

the system through traffic input. 

Keywords: Network calculus, ad hoc networks, effective and parametric service curves. 

INTRODUCTION 

 Using an approach called nowadays Network Calculus [7], we are able to 

solve many problems occurring in the area of networking, as, for example, that 

shown in [4] or [5]. In this method, the notion of network service curve [4, 7] plays 

a fundamental role. Its basic form is assumed to be deterministic and time-

invariant, but there is also possibility to consider a more sophisticated stochastic 

variant. The latter is called the stochastic service curve [4]. Furthermore, in each of 

the aforementioned variants, the influence of the so-called cross traffic (when 

servicing the through traffic) can be taken into account. For purposes of this paper, 

we use such a variant of the conventional deterministic service curve [4] that 

depends upon the system cross traffic intensity. We call it a system parametric 

service curve for through traffic.  

In general, such the parametric service curve will describe a non-stationary 

traffic system. However, we will assume in this study that it is quasi stationary 

(depending only upon some parameters of the cross traffic) in time intervals in 

which the traffic is analyzed and/or controlled. In other words, it will be assumed 

to be approximately time-invariant in these periods. At this point, we point out that 

the similar assumptions underlie also derivations of the ∈-effective service 
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curve [7]. So, because of this fact, it will be useful to look for some relationships 

between the aforementioned curves; we will do this in the next sections. Both of 

them try to determine, on their own way, how much bandwidth is actually left over 

in a traffic system in a given approximately stationary interval for servicing the 

through traffic. 

 This paper is organized as follows: After a short Introduction, we discuss  

in Section II the probing traffic pattern devised in [8] in the context of mechanisms 

of the carrier sense multiple access with collision avoidance (CSMA/CA) and the 

request-to-send (RTS) handshaking procedure used in ad hoc networks. We explain 

in more detail how these mechanisms work in the presence or absence of the cross 

traffic, pointing out the differences between these scenarios. Section III is devoted 

to a detailed explanation of the means of constructing the ∈-effective service 

curve; it aims in making a needed correction of a basic expression provided for it 

in [8]. The next section presents a new interpretation of the evaluation of the  

∈-effective service curve as performing the measurement with the use of Dirac 

impulse. Finally, Section V presents the concluding remarks.  

1. PROBING TRAFFIC FOR MEASURING  

THE EFFECTIVE SERVICE CURVE 

 The ∈-effective service curve can be applied to different kinds of traffic. 

However, it was originally devised [8] for the use in ad hoc networks. More 

specifically, development of the effective service curve presented in [8] is related 

to wireless networks using the carrier sense multiple access with collision 

avoidance (CSMA/CA) mechanism of the medium access control (MAC) [3]. 

Moreover, the networks considered in [8] and in this paper use handshaking 

procedure. This means that the transmitter sends the request-to-send (RTS) packet 

to its neighbor, and the destination receiver, if ready to receive the data, responds 

sending out the clear-to-send (CTS) packet. After receiving the CTS packet, the 

transmitter sends the data packet. Receipt of this packet must be acknowledged by 

the destination receiver by sending the so-called acknowledgement (ACK) packet 

to the transmitter. This procedure is schematically depicted in Fig. 1, where the 

periods DIFS and SIFS mean the so-called distributed and short, respectively, inter 

frame spaces. Also, note that the propagation delays between the transmitter and 

the destination receiver are omitted in Fig. 1 for simplicity.  

 For more details regarding the CSMA/CA procedure, see, for example, [3]. 

 In what follows, we refer to as exactly that modeling environment, shortly 

described above, which was assumed by Valaee and Li in [8]; for that environment, 

we calculate effective service curves using simulated data. Moreover, we use also 

in this study, for comparison purposes, the same notation as was assumed by 

Valaee and Li. 
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 In the measurement method presented in [8], the probing traffic consisted of  

a sequence of packets named a greedy pattern of probing packets. This greedy 

pattern means that at the moment at which a given probing packet leaves the 

transmitter buffer, the next one is generated and put immediately into the queue  

of probing packets. 
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Fig. 1. Schematic illustration of the CSMA/CA procedure for sending the through traffic 
packet, with the use of RTS and CTS packets, and the acknowledgement 

 Let us denote a moment of the ith packet arrival at the destination receiver 

(including acknowledgement) by τi, i = 1, 2, …. . Using this, we can express the 

delays of the successive probing packets in the head of the probing queue as  

 
1 0
  with  1,2,...  and  0

i i i
iδ τ τ τ

−

= − = = . (1) 

 After [8], we assume here that the delays δi consist of two components. That is 

they can be expressed as 

 
i i

b wδ = + ,  (2)  

where b stands for the total transmission time of the probing packet and is given by 

 3
DIFS SIFS RTS CTS ACK PRB

b T T T T T T= + + + + +  (3) 

ifor the scheme shown in Fig. 1. In (3), the times 
DIFS

T  and 
SIFS

T  stand for the 

duration times of the DIFS and SIFS periods, respectively. Moreover, the 
remaining ones in (3), i.e. ,  ,  

RTS CTS ACK
T T T  and 

PRB
T , are the transmission times  

of the RTS, CTS, ACK, and of the probing data packets, accordingly. Further, 

/
PRB PRB

T L C= , where 
PRB

L  stands for the probing packet length in bits (packets are 

assumed to have the same length), and C  is the channel transmission rate. Finally, 

i
w  in (2) means the ith packet total waiting time. It is assumed that 

i
w  depends 
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upon the number of active nodes, upon the lengths of the transmitted packets of the 
cross traffic, and upon the size of the backoff window. 

Consider now a case, which was also considered in [8], when no cross traffic 

is present in the system. Obviously in this case, apart from two nodes, other ones 

are not active, so no cross traffic packets are sent. Nevertheless, according to the 

IEEE 802.11 standard description given in [6] (see also, for example, [1] and [2]), 

the backoff window is then also used in transmitting each of the packets of  

a sequence, however, with exception of the first one (initial one). So, certainly for 

the initial packet, we shall have 
0

0w = . But all the other waiting times 

,  2,3,...
i

w i = , will have random values different from zero. 

 Nevertheless, note that an occurrence of ,  2,3,...
i

w i = , having zero values 

cannot be fully excluded. This is so because the backoff time, being a random 

integer number of time slots, is taken from the interval ( )0, 1CW −

, where CW   

(or more precisely, 1CW −
) denotes the length of the backoff window. Hence, 

occurrence of the backoff time equal to zero is possible. Of course, it will happen 

very rarely. 

 The use of the backoff window also in the absence of cross traffic  

(in transmitting the second, third, and next packets) follows from a rule embedded 

in the IEEE 802.11 standard. This rule enables the stations, which share the 

medium, a fair access to it. It says that a station that has just finished transmission 

of a packet and has the next one ready to transmit cannot send it out immediately 

(of course, after waiting first the usual time interval DIFS). In the next step, it 

always carries out the backoff procedure. And in the time of performing this 

procedure, other stations, having at a given moment a smaller value of the backoff 

time, get a chance to transmit their packets (if have any). 

 Obviously, the contention procedure using backoff window and described 

shortly above is superfluous in the case of lack of cross traffic. However, it does 

not matter because occurrence of such the situation is absolutely unusual in a real 

network. 

 After performing the initial transmission, the first backoff window length is 

set to 
min

CW CW= , where 
min

CW  means a minimal value of CW  chosen for  

a given technology. For example, for the Direct Sequence Spread Spectrum 

(DSSS) technology, 
min

32CW =  slots, which gives 620 µs for the value of 1CW −
 

expressed in µs [2]. So, in other words, the backoff time in this case can assume, 

randomly, one of the discrete values taken from the set {0 µs, 20 µs, …, 620 µs}. 

And consequently, if the backoff window is not doubled, 
i

w  has just the same 

value as indicated above for the backoff time. 

 More complicated situation occurs when the channel impairments cause that 

the transmission fails and the backoff window is doubled. And such a means of 

extending the contention window size, as sketched above, can be continued [2, 6], 

if needed, up to achieving the assumed maximal value 
max

CW of CW. For example, 
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max
2024CW =  slots for the DSSS technology. Furthermore, in the variant of the 

IEEE 802.11 standard named IEEE 802.11e, packets at a node can be assigned to 

four different queues competing with each other. And this, obviously, can cause 

increase of the backoff window. 

 Comparison of the above description of the process of transmission  

in the absence of cross traffic with that in its presence (see, for example, [8] and  

[1, 2, 6]) shows that they are in principle identical, from the point of view of the 

contention window used. However, viewed as stochastic processes, they will differ 

more or less from each other. Generally, the representatives of the through traffic 

transmission processes in the presence of cross traffic will be far more involved 

than those taking place in its absence. Obviously, the first ones will depend hardly 

upon the statistical characteristics of the cross traffic. 

 Note that an example given in [8, Fig. 3, p. 1247] confirms the fact stated 

above. The random waiting times of the probing packets changing from about  

4,25 ms to about 4,85 ms illustrated therein, which were registered in the absence 

of cross traffic in a simulated network, correspond to 4,25b ≅  ms and wi’s,  

i = 1,2, …., varying randomly in the range from 0 to about 0,6 ms. So, from the 

previous discussion of the influence of contention window lengths on the values  

of wi’s, i = 1, 2, …, it follows that doubling of the backoff window did not occur  

in simulations performed in [8]. And, in these simulations, the probabilistic 

characteristics of wi’s, i = 1,2,…, were solely determined by the statistical 

characteristics of the backoff time.  

 Obviously, such a simple scenario regarding the waiting times wi’s, i = 1,2, …, 

will rather not take place in the case of cross traffic occurrence. Then, it will be 

more complicated. 

2.  BACKGROUND OF THE EFFECTIVE SERVICE CURVE  

FOR PRACTICAL EXPLOITATION 

The method of estimating the ∈-effective service curve devised in [8] uses  

a batch of probing packets that are sent out at the system input. This can take place 

in the presence as well as absence of the crossing traffic. The input packet 

sequence applied is generated in a greedy fashion, as explained in the previous 

section. The probing packets sent constitute the through traffic. Generally, they are 

not serviced immediately, but must wait some periods that depend upon the cross 

traffic intensity. These periods, that is the delays 
i

δ  given by (2), are measured, 

and afterwards released from the constant delay b given by (3). As the result, we 

get the waiting times 
i i

w bδ= − . Next, on applying a batch of probing packets that 

comprises K consecutive packets, we express the successive sums of the waiting 

times as 

  ( )

1
,  1,2,...,

kk

ii
w k K

=

Δ = =∑   (4) 
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where 
i

w  means, as expressed by (2), the waiting time of the ith probing packet. 

(By the way, (4) here represents a little bit simplified version of an equivalent 
expression given in [8].) Further, assume that the times (variables) ,  1,2,...,

i
w i K= , 

are random, then their sums ( )
,  1,2,...,

k
k KΔ = , are also random. Moreover, we 

assume that the sequence { }
i

w  is an independent identically distributed one. And it 

is used to define the “most probable values of sums of delays” in such a way 

  
( )( ){ }inf Pr ,   1,2,..., ,
k

k
T k Kτ τ

∈

= Δ > ≤∈ =  (5) 

where ( )( )Pr
k

τΔ > ≤∈   means that the probability of occurrence of the event 

( )k
τΔ >  is less than or equal to ∈ . Simply, (5) states first that all the values of τ that 

fulfil the above relation are found, and then the infimum operation is performed on 
the set obtained. (At this point, we remember that the infimum operation, denoted 
here by a symbol inf, means taking the greatest value of the lower bounds of a set 
considered.)  

 Using (4) and (5), the ∈-effective service curve ( )S t
∈

 was defined in [8] as  

a piecewise linear function consisting of K segments of straight lines, described by 
 

  ( ) 1

1

1

1,  ,   1,2,..., ,k

k k

k k

t T
S t k T t T k K

T T

∈

∈ ∈−

∈ −∈ ∈

−

−
= + − ≤ ≤ =

−

  (6) 

 

with the index k referring to the kth curve segment, and with the initial value  

of 
0

0.T
∈

=  

 The expression given by (6) is not, however, fully correct because of  
a “squeezed” time variable t used in it. That is the time variable t used therein does 
not describe a really elapsing time; it equals the really elapsed time minus the 
corresponding number of periods b (in which the packet transmission tooks place). 
Because of this fact, the effective service curve given by (6) is rather useless. 
Convolution of this service curve with an input traffic would not lead to receiving  
a correct result. 
 Taking into account the argument invoked above, it can be easily shown that 

the correct expression for ( ) ,S t
∈

instead of that in (6), is given by 

   ( )
( )( )

( )
1

1

1

1
1,  1 ,   1,2,...,

k

k k

k k

t T k b
S t k T k b t T kb k K

T T b

∈

−
∈ ∈

∈ −∈ ∈

−

− + −

= + − + − ≤ ≤ + =

− +

 (7) 

for a really elapsing time t. 

 Note that the traffic expressed with the use of ( )S t
∈

 given by (7) is counted in 

packets. To express it in bits, the service curve must be multiplied by the packet 

length (in bits). We remind that the latter was denoted above as .

PRB
L  
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 Obviously, in practical applications of the effective service curve, the 

probability 
( )( )Pr
k

τΔ >  occurring in (5) is unknown. In these cases, however, we 

can estimate (approximate) the “probabilistic” sums of delays, ,   1,2,..., ,
k

T k K
∈

=   

in (7) by their actual values 
( )
,   1,2,..., .

k
k KΔ =  So, we write then 

 

  
( )
,   1,2,..., .

k

k k
T T k K

∈

≅ = Δ =   (8) 

 

Such the simplification of (5) as given by (8) is in fact used in measurements of the 

knee points ,   1,2,..., ,
k

T k K
∈

=  of the curve (7). 

 Consider now the case of sending probing packets in the absence of any cross 

traffic. Then, as we know from the analysis carried out in the previous section, we 

shall have 
1

0w =  (by making 
( )1

0Δ = ); however, all the other waiting times wi’s,  

i = 2, 3, …., will be greater than zero (with the probability approaching one). 

Hence, we shall also have all the next ( )
,   2,3,..., ,

k
k KΔ =  greater than zero (with 

the increasing probability of certainty, as they are the sums of wi’s, i = 2, 3, ….) 

 Let us now apply ( )1
0Δ =  in (5). Then, we get ( )( )1

Pr 0 0τΔ > ≥ =   satisfied for 

every 0τ ≥ . In consequence, the inequality ( )( )1

Pr τΔ > ≤∈ occurring in (5) will be 

satisfied for every 0τ ≥  and for every 0∈≥ . So, from this, we shall be able to 

conclude that 
1

0,T
∈

=  after performing the operation of taking infimum in (5). 

 By the way, note also that using (instead of (5)) the estimate of 
( )1

0Δ =  in (8), 

one gets exactly the same result. That is 
( )1

1 1
0.T T

∈

= = Δ =  

 Applying 
1

0T
∈

=  in (7) leads to 
 

  ( ) ,   0 .
t

S t t b
b

∈
= ≤ ≤   (9) 

 

 Looking now at (9), observe that even in this specific case, when 
1
T

∈  equals 

zero, the effective service curve ( )S t
∈

 given by (7) assumes finite values (it does 

not equal infinity or gives an undefined symbol as for example 0/0). Evidently, this 

is not the case if we use expression (6) after [8]. Note that then, using 1k =  and 

1
0T

∈

=  in (6), we get ( ) 0S t t
∈

= = ∞   for 0t >  and ( ) 0 0S t
∈

=  for 0t = . Both the 

two latter results are evidently not correct. So, really, formula (6) given in [8] 

cannot be assumed to be correct for the index 1k = ; then, (7) should be used. 

Furthermore, the arguments used by derivation of (7) convince also that, for all the 

next indices 2,3,...,k K=  (with the corresponding delays 
1

,  2,3,...,
k k
T T k K

∈ ∈

−
≤ = ), 

(7) represents an appropriate formula for the effective service curve (not (6)).  

As mentioned before, it is a piecewise linear function with finite slopes in its 
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segments. And because 
1

0 ,  2,3,..., ,
k k
T T k K

∈ ∈

−
≤ − =  holds, the relation between the 

slopes in the corresponding segments of this function can be written as 
 

  
1

1 1
,  2,3,..., .

k k

k K
T T b b

∈ ∈

−

< =

− +

  (10) 

 

 Observe from (9) and (10) that the slope cannot be greater than 1 b  (or 
PRB

L b  

in bits/s) in any of the segments of the piecewise linear function given by (7).  

So 1 b   is the maximal throughput for the through traffic in the absence of the cross 

traffic. 

3.  MEASURING SCHEME IN WHICH A DIRAC IMPULSE IS USED 

 Construction of the greedy pattern of probing packets used in the method  
of [8] was described in Section 1. Here, we recall that a basic mechanism in this 
pattern is the following: if a given probing packet of the pattern leaves the 
transmitter buffer, the next one is generated and put immediately into the queue  
of the probing packets.  

Consider next a virtual situation (an artificial one) in which all the K probing 
packets appear jointly at the same time at the transmitter buffer at the starting time 
instant  t = 0.  

Compare then these two situations described above (real with artificial one). 
Observe that traffic servicing process of a system will not distinguish between 
them. The results of servicing will be identical in both the cases. The second 
description (that is that virtual one) will be, however, more convenient for us for 
analysis of the measurement process. So, in what follows, let us denote the input 

through traffic by ( )t

A t  and describe it by the following function 
 

  ( )
 for  0

.
0   for  0

t
K t

A t
t

≥⎧
= ⎨

<⎩
  (11) 

 

This function is illustrated in Fig. 2.  

 

0 t 

K

A
t( t)

 
 

Fig. 2. Illustration of the function A
t
( t )  given by (11) 
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 Observe now that A
t
( t)  given by (11) approaches the so-called Dirac function 

[7] (named also the burst impulse or the Dirac impulse [4]), when the number K of 
probing packets goes to infinity. In the network calculus, this special impulse 
(function) is defined as [4, 7]  

 

  ( )
 for  0

.
0   for  0

t

t

t

δ
∞ ≥⎧

= ⎨
<⎩

  (12) 

 

We interpret the last result saying that the function A
t
( t)  in an idealized form 

(that is when the parameter K goes to infinity) approaches the burst impulse (12). 

(By the way, note that then A
t
( t)  is not a function anymore because δ( t) ,  strictly 

saying, is not.). 

Further, assume that a traffic system analyzed behaves approximately linearly. 

That is the following 

  ( ) ( ) ( ){ }
0

inf
t t t

t

D t A S t
τ

τ τ

≤ ≤

≅ + −   (13) 

holds, where D
t
( t)  and  S

t
( t)  mean the cumulative through traffic at the system 

output and its service curve [4, 5, 7], respectively. In (13), the service curve S
t
( t)  

is assumed to be deterministic. However, because it depends upon the parameters 

of the cross traffic, we shall call it a parametric one.  

Moreover, we use the following relation 

  ( ) ( ) ( ){ }
0

inf ,
t

D t D t
τ

δ τ τ
≤ ≤

= + −  (14) 

which was proved, for example, in [1], where D( t)  means any cumulative traffic 

function. We use also the approximation of (11) by (12). Altogether, this gives 

  ( ) ( ).t t

D t S t≅  (15) 

 To proceed further, we recall now, see Section 2, that construction of the 

effective service curve S∈ ( t)  can be described as servicing the through traffic in 

the successive time intervals according to a rule of constant rate server(s). In other 

words, it can be viewed as a kind of service curve calculated for “a virtual constant 

rate server in the successive periods”, and with “processing rate of this server 

varying from period to period”. Obviously, its successive “period-constant” rates 

are given by 

  
1

1
,  1,2,...,

k k

k K
T T b

∈ ∈

−

=

− +

 (16) 

(see (10)). So, as such, the effective service curve S∈ ( t)  can be assumed to be an 

estimate of the service curve  S
t
( t)  introduced above, and vice versa. Hence, taking 

also (15) into account, we write 

  ( ) ( ) ( )t t

S t S t D t
∈

≅ ≅  (17) 

where the symbol “≅ ” means „estimate of”. 
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 In summary, interpretation of the final result in this section expressed by (17) 

is as follows: Applying the greedy pattern of probing packets, that is shaping the 

system input through traffic as described in Section 1, results in its output through 

traffic being approximately equal to the system service curve (for this traffic), 

when the system considered is linear or approximately linear. Furthermore, the 

system effective service curve S∈ ( t)  can be estimated by the service curve for the 

through traffic S
t
( t) , and vice versa. And finally, the approximates of both the 

service curves can be quickly obtained by measuring the system output through 

traffic. 

CONCLUSIONS 

In this paper, we have discussed some practical aspects of a technique devised 

in [8] for ad hoc networks that uses the so-called ∈-effective service curve. Among 

other things, the basic expression describing the above curve has been corrected to 

the form given by (7); this form allows the correct interpretation of servicing the 

through traffic in the absence of cross traffic. Furthermore, it has been shown that 

the use of the greedy pattern of probing packets used in the method of [8] and 

described also here in Section 1 can be interpreted approximately as applying the 

Dirac impulse to the system through traffic input. It has been also shown that the 

system effective service curve S∈ ( t)  can be estimated by the service curve for the 

through traffic S
t
( t) , and vice versa. Finally, we have demonstrated that the 

approximates of both the aforementioned service curves can be quickly obtained by 

measuring the system output through traffic. 
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O PRAKTYCZNYCH ASPEKTACH ZASTOSOWANIA EFEKTYWNEJ 

KRZYWEJ SERWISOWEJ W SIECIACH TYPU AD HOC 

Streszczenie 

Tak zwana ∈-efektywna krzywa serwisowa pojawiła się w literaturze przedmiotu przy rozpatrywaniu 

rozproszonej obsługi żądań dostępu w bezprzewodowych sieciach typu ad hoc. Jej praktyczna 

użyteczność polega na tym, że może ona być konstruowana w czasie rzeczywistym przy wykorzystaniu 

danych pomiarowych. Może ona być również na bieżąco modyfikowana w zależności od zmian 

intensywności tzw. ruchu krzyżowego w sieci, dopasowując obsługę żądań do aktualnego obciążenia 

sieci. W tym artykule pokazano, jak ∈-efektywną krzywą serwisową można aproksymować za pomocą 

parametrycznej krzywej serwisowej sieci dla ruchu głównego, która w tym przypadku będzie zależeć 

od intensywności ruchu krzyżowego. Pokazano również, że podane w literaturze wyrażenie, opisujące 

∈-efektywną krzywą serwisową, nie do końca jest poprawne i musi być skorygowane. W tej pracy 

wyprowadzono wzór w pełni poprawny, który pozwala również na poprawny opis obsługi głównego 

ruchu przy braku w sieci ruchu krzyżowego. Ponadto pokazano, że użycie w pomiarach tzw. 

łapczywej (ang. greedy) próbkującej sekwencji bitów można zinterpretować w przybliżeniu jako 

użycie impulsu Diraca na wejściu do sieci dla ruchu głównego. 

Słowa kluczowe: rachunek sieciowy, sieci typu ad hoc, efektywne i parametryczne krzywe serwisowe. 

 

 




