

ASSESSMENT OF IMPACT OF SELECTED FACTORS
ON THE EFFECTIVENESS OF COST-BASED
OPTIMIZER IN DATABASE SYSTEMS

Renata Pacholewicz
Department of Marine Electronics
Gdynia Maritime University
Poland

ABSTRACT

The paper presents the results of experiments, which aim was to evaluate the influence of selected
factors on the cost and time of the query in database systems. The cost and execution time are criteria
of assessment of query plans by the cost-based optimizer of a database system. Essential for
constructing queries and for the efficiency of cost-based optimizer are: indexing, aliasing, asymmetry
of the data and the availability of statistics referring to the tables. Experiments confirmed that the
appropriate way to implement a query, based on the use of indexation or aliasing, and on modification
of query parameters with the systematic generation of statistical information about the data can
significantly reduce the time to obtain query results, offload the processor and reduce the number of
disk reads. The experiment was conducted using the real data in the database ORACLE
Keywords: database, query efficiency, cost-based optimizer.

1. INTRODUCTION

The amount of data stored in databases is increasing day after day and even hour
after hour. Growth of the collected data makes that searching for a detailed
information becomes more challenging, and absorbs more and more time. The
growth is also the reason that producers of database systems offer some new
solutions. The latter are often associated with improving methods of data access
and with reduction of the query execution time. The aim of the research presented
in the paper is to picture some selected ways of optimizing data access and
effectiveness thereof when compared with the access time or the cost of access
without using them.
In practice, a database query is formulated on the basis of the declarative notation
in which the user indicates the search criteria. This declarative way of expressing
the expectations of the user does not specify how to find the data. The description
of how to find the data in the database corresponds to the database management

R. Pacholewicz, Assessment of impact of selected factors on the effectiveness of cost-based optimizer... 93

system, which generates a query plan called microcode. Query plans can be
different, as different can be query to the database formulated by the user.
Furthermore, for the complexity of a query directed to a database there may be a
variety of alternative query plans. The choice of the query execution plan is done
by a module of the database management system called query optimizer.
One of the standard ways of formulating query plans relies on the rule-based
optimizer, however this is a subroutine which is superseded by cost-based
optimizers as more elastic. Rule-based optimizer is a set of rules which contains
guideline information for database engine, on the basis of them the latter is able to
deliver the needed data in the shortest time. An optimizer is not a product but a
property of a given database engine. Every producer of a database software, for
example: IBM (DB2 bases), Microsoft (MSSQL) or OpenSource group
(PostgreSQL), develops its own database engine, hence it supports its own
algorithms which aim is to analyze the data access time to make it the shortest. In
the case of basis PostgreSQL (it contains its own cost optimizer) the main factor to
choose the query plan is the estimation of I/O disk operations cost. Its makers
claim that this is the main factor and that is why PostgreSQL chooses the plan with
the least number of such operations. Notice that in this case thanks to the code is
open it is possible to analyze the used optimization codes (when a base is
commercial then codes are classified).
As it has been mentioned an alternative approach is to use the cost-based optimizer.
The way of operation of the cost-based optimizer relies on generating all the
theoretically possible query plans on the basis of such information as: table size,
number of rows, the width of the key. On the ground of this a plan is created which
is stored in the table PLAN_TABLE. Then the engine of the database evaluates the
set of plans of the query by analytical assigning the time of execution to them. The
analysis performed by the cost-based optimizer relies on the statistics from the
tables and on the indexes referring to the number of records stored in them, unique
keys, etc. These statistical information becomes available for the optimizer after
execution of the command ANALYZE upon the given table or they are collected
by DBMS_STAT package. If the table is not analyzed and there is no information
about the statistics, in order to choose the best path for data access, cost-based
optimizer uses the rules of logic. Formulated SQL query will be subjected to
optimization of cost only in the case that the statistical analysis has been performed
for at least one of the tables listed in this command. Then the optimizer seeks for
the best path on the basis of information from the data dictionary [1]. Eventually,
this query plan is used for which the estimated execution time is the shortest.
In practice, the evaluation of query plans does not use the real time of query
execution but the cost of a query. For the products of Oracle the cost of the query
equals to the approximate time of one operation O in the operating system.
In database products of Oracle—from version 9i—cost-based optimizer is a tool by
default.

94 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 84, październik 2014

The aim of the paper is to evaluate the influence of selected factors such as
indexing, aliasing, asymmetry of data and availability of statistics referring to
tables on the effectiveness of a query (the selection of the best query execution
plan) implemented by the cost-based optimizer module in the Oracle database
system. Below, at first the tested database environment and the plan of
experiments, then the results of experiments are discussed. In the conclusions some
general remarks are included.

2. ENVIRONMENTAL TEST DATABASE

Measurements of the time and cost of a query was performed in the environment
presented in Fig. 1.
For estimation of the query execution plan cost the cost-based optimizer is to
assess numbers of records (so called cardinality) which will be processed in
different phases of the realization of the query. Precision of these assessments is
important for decisions referring to, for example, the sequence and the algorithm of
joining the tables. Estimation of cardinality is done on the basis of the available
statistics of tables and columns thereof. The optimizer is not always infallible,
especially when there are some compound predicates in the query or the available
statistics are imprecise or out of date [2].

Fig. 1. Database environment schema used in the experiment

In experiments OracleVM VirtualBox virtualization platform (the only one fully
supported by Oracle) was used. It is based on implementation of the architecture of
64-bits Intel X86 and Windows 7 (64-bits also). Database environment schema
used in the experiment is shown in Figure 1.
Operating system ORACLE Enterprise Linux Server 5 in the 64-bits version
(recommended by ORACLE) was chosen as the Guest system. Oracle database

R. Pacholewicz, Assessment of impact of selected factors on the effectiveness of cost-based optimizer... 95

version 11.2.0.2.0 was installed in it. Resources for the virtual machine were
allocated as follows:
• the amount of RAM: 900 MB,
• i7 processor units: 1,
• system disk: hda1 11GB,
• database disk: hdb1 12GB.
The database files, i.e. the so-called binaries (database software), data and system
files (redolog file, control file, undo, users, temp, system, sysaux) were placed on
the disk sdb1. Type charset was set as follows:
• nls_language AMERICAN,
• nls_territory AMERICA,
• nls_date_format DD-MON-RR,
• nls_characterset AL32UTF8,
• nls_nchar_set AL16UTF16.
It was important for the proper functioning of the database to reserve in the
memory an appropriate size of SGA (System Global Area, see fig. 2), which is a
shared area of memory that stores data and the control information for the database
instance. System software allocates memory area every time you start the database
and releases it at closing. Users who log into the database, use the memory space
for sharing information. In order to maintain optimal system performance database
memory allocation practice is the relatively large size of the SGA to be able to
store in RAM as much information as possible and thereby minimize the number of
operations I / O between the database instance and hard disks [3].

Fig. 2. The schema of distribution of SGA memory in RAM allocated to the database [4]

96 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 84, październik 2014

Table 1 shows the parameters that are associated with the allocation of appropriate
amounts of RAM for each area of operation. The value zero means that
the memory allocation for the indicated parameters is done automatically—
the database decides on it itself based on its load. The database administrator
specifies only the upper limit of the memory that the database can book into the
operating system – Memory Target parameter.
Table 2 shows the selected parameters of cost-based optimizer, which are used by
the database management system and are taken into account when choosing the
query execution plan.

Table 1. The values of the basic parameters of the base memory

Parameter Type Value
SGA Big Integer 457179136 kB
Shared Pool Big Integer 0
Large Pool Big Integer 0
PGA Big Integer 0
SGA_Target Big Integer 0
Memory max target Big Integer 457179136 kB
Memory target Big Integer 457179136 kB

Table 2. Optimizer parameters

Parameter Type Volue
Optimizer_dynamic_sampling Integer 2
Optimizer_index_caching Integer 0
Optimizer_index_cost_adj Integer 100
Optimizer_mode String ALL_ROWS
Query_rewrite_enabled String True
Skip_unusable_indexes Boolean True
Statistics_level String All

The experiment has been performed in interprocess communication, using
SQLPLUS program that was run on the same machine as the database. This
allowed that the experiment results were independent from the network bandwidth
and from the load the client’s computer. Further, the software SQLPLUS was used
as the database administrator’s console. Experiments were conducted with active
AUTOTRACE database function, it allowed to display execution plans with
SQLPLUS.

R. Pacholewicz, Assessment of impact of selected factors on the effectiveness of cost-based optimizer... 97

3. EXPERIMENTS AND THE RESULTS DISCUSSION

The aim of the experiment was to evaluate the effect of indexation, aliasing, data
asymmetry and unsuitable data analysis for the cost and time of the query, and thus
for the efficiency of the cost-based optimizer in database system ORACLE.

3.1. Impact of indexation

The first experiment was to verify the impact of indexation or lack thereof on the
cost of the query [5]. It was assumed that the assessment of the cost of making an
SQL query and its execution time will be carried out on operations such as
SELECT and for five different sizes of databases. In the first series of experiments
5 queries to the tables were performed on which the index had been removed with
the structure of the tables maintained (the number and width of columns were the
same). The difference between individual measurements was the assumed number
of records stored in the table. In a second series of experiments the same tables as
in the first series were used, but an index was set up in them, its structure is
presented in Figure 3. Moreover, each database query was restricted to the same
size of the sample, it was 1000 records.

Fig. 3. The structure of the index used

The results of the experiment which aim was to evaluate the impact of indexation
and its lack on the cost and the time of a query, depending on the size of the
database are shown in Figures 4.
The experiment showed that the set-up of the index has a significant impact
on reducing the cost of a query, and hence also for the duration of its execution.
In the analyzed case it was based on two columns from the test table, including the
column of the primary key. Especially significant benefit was observed for the
table that contained more than 8,000,000 records. The experiment confirms that the
index set-up has eliminated the full scan of the test table and thus greatly reduced
the number of physical reads from the disk.

98 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 84, październik 2014

Fig. 4. The cost of a query for different sizes of data in the database without index
on the table (a) and with index on the table (b)

Fig. 5. Estimated time [ms] of the query execution for different sizes of data in the database

3.2. Impact of aliasing

The aim of the second experiment was to examine the effect of aliasing on the time
and cost of a query. The time and cost of the query was tested in two cases with an
alias put on the table and with the alias removed. The test case without an alias is
not hypothetical because in practice faced with the need to obtain the information

R. Pacholewicz, Assessment of impact of selected factors on the effectiveness of cost-based optimizer... 99

from more than one table, the names of which have a dozen characters, and with
the complexity of the query you often involuntarily omit the alias that you had
defined. In fact, aliasing is not only a facility but it eliminates unnecessary
searching the database and returning erroneous results, especially when the names
of the columns used in the query are the same for different tables. In addition,
the influence of the change of the parameter of optimizer OPTIMIZER_
INDEX_COST_ADJ on the time and cost of a query was verified. Cases with alias
and without it were examined.

SELECT nvl(round(nvl(Sum(CZAS_NPRZ)+CASE WHEN data_umowy>='2000/01/01' THEN abs35 ELSE
0 END,0)/60,1),0) wynik FROM
(
select a.NR_PRAC, a.KOMORKA, a.DATA, a.CZAS_NORM_PRZEPR, a.CZAS_DYZUR, a.CZAS_NPRZ,
a.CZAS_NPRZ_W, a.ABSENCJA, to_char(data_baza,'YYYY/MM/DD'), abs35, data_umowy, abs33
from t_karta_cz a, s_slow_z3 s, t_ew_pracownik b, tab_grupy_przebieg p where
a.data between '2000/07/01' and '2013/09/30'
and a.absencja in ('CD','CC','CS','CG','CH','CW','CX','W','WZ','WN','OD','O','P','S','UZ','PU')
and a.nr_prac=b.nr_prac
and a.nr_prac=p.nr_prac
and p.nazwa_op='PM_POZNAN_KURZAJIRENA'
and a.komorka=s.kod
AND b.data_baza<='2000/09/30'
AND p.data_od=(SELECT Max(data_od) FROM tab_grupy_przebieg z, t_karta_cz a WHERE
a.nr_prac=z.nr_prac
AND z.data_od<=a.data
and z.nr_mpk in(select nr_mpk from lista_mpk_wz where nazwa_op='PM_POZNAN_KURZAJIRENA')
and z.nazwa_op='PM_POZNAN_KURZAJIRENA'
and z.char_zatr NOT IN ('23','24','31','41','42','43','44','45','46','47','51','91','92','93')
)
)
WHERE Nvl(abs33,'N')='N' OR Nvl(abs33,'N')='T'
group by CASE WHEN DATA_UMOWY>='2000/01/01' THEN abs35 ELSE 0 END

Fig. 6. Query SELECT formulated for the evaluation of the benefits of aliasing tables

Aliases that have been removed are marked with grey in Figure 6. Collected results
are presented in Figure 7. The middle column represents the point of reference for
the presented results, because they present the cost and time of a query that was
stored properly and optimizer parameters had not been modified. Omission or
removal of aliases resulted in a twofold increase in the cost — column on the left
(9832 processor cycles)—and up to 30-fold increase in the time required to execute
the query—also on the left (1580ms)—compared to baseline or cost (4389 CPU
cycles) and time (53ms).

100 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 84, październik 2014

Fig. 7. The impact of aliasing and its absence in the time and cost of a query

The right column in Figure 7 illustrates the results obtained after changing the
parameters of the optimizer. Based on this it can be seen the change of the
parameter (optimizer_cost_adj) reduces execution costs by 50% compared to the
representative sample (middle column). This is because as a result of the change
the optimizer is forced to a more efficient use and checking the indexes defined for
the tables. This is confirmed also by the print of the query plan (see Figure 8a and
8b). For example the scan of index Z3_PK_KOD_KOMOD changed from FAST
FULL SCAN to INDEX RANGE SCAN, whereby the number of rows to be
searched decreased from 1277 to 1 and thereby the number of active bytes—from
8939 to 7.

a)

b)

Fig. 8. Query execution plans: before changing the parameters of the optimizer (a),

after the change (b)

R. Pacholewicz, Assessment of impact of selected factors on the effectiveness of cost-based optimizer... 101

3.3. Data asymmetry in the table

In the third experiment the influence of the asymmetry of the data on the cost of
downloaded data have been evaluated. The problem of asymmetry refers to the
situation, when an index is defined for a column, but its type is inappropriate for
the data stored in the latter. If the data stored in the given column get the assumed
values, for example 0 or 1, a unique index is to be defined. Otherwise, the
optimizer will not be able to determine the correct distribution (the number of
records having the value 0 or 1 in the column) and it will assume a uniform
distribution of each of the values that occur in it. Such an assumption makes that
during the selection of records whole the table is viewed row by row [6].
The study referred to a CUSTOM table consisting of four columns; the scheme,
layout, and width thereof is shown in Figure 9.

Fig. 9. Schema of the examined table

Information stored in column STATE is used to describe the status of the order and
it may get only two values (O—order status Open and C—Close—the order
closed). Additional information about the array CUSTOM includes:
• the number of records stored in the table during the experiment: 1M,
• the number of records on the status C: 999 900,
• the number of records on the status O: always.

Fig. 10. Execution plan for the query selecting all the records with the status O (Open) from
the table CUSTOM

In Figure 10 it can be seen that the lack of current statistics forced the optimizer to
assume as a default that the data in the table are evenly distributed 50/50. Under
this assumption, database ORACLE carries out a full table scan every time, i.e. it

102 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 84, październik 2014

performs TABLE ACCESS FULL, checking the status of orders for each of the
millions of records stored in the freezer. The cost of the query in this case was very
high and equaled 2468; the amount of data downloaded for analysis was 52MB.
To eliminate the problem of a full table scan a unique index was set up on the
column STATE; statistics for the table and all indexed columns (indexes) were
collected.

Fig. 11. Execution plan for a query selecting all the records with the status O (Open) from

the table CUSTOM, after collecting statistics

The calculation of the current statistics for the table and its indexes caused that the
cost of execution fell to 4 CPU cycles, see Figure 11. When compared to the results
of previous experiments, the increase in speed of execution of queries is eminent.

3.4. The impact of statistics and the number of records in a table

In the fourth experiment the impact of inappropriate data contained in the database
for the cost of queries was examined. The situation of inappropriate data occurs
frequently when an analysis of tables and indexes is carried out, and in the given
moment they do not contain typical amount of data. For effective choosing the best
execution plan a cost-based optimizer must have the accurate information about the
volume of the data in the examined objects, or in other words it needs the access to
current statistical information about them. To sum up, the most common situations
when inadequate analysis of the data may occur are:
• no current statistics,
• analysis of the table at the time when it is empty and not at the moment when it

contains hundreds, thousands or millions of rows.
As a test object table CUSTOM3 was used. It was built on the basis of pre-test
table CUSTOM with some additional assumptions such as:
• number of rows: 1 million,
• lack of calculated statistics for the table,

R. Pacholewicz, Assessment of impact of selected factors on the effectiveness of cost-based optimizer... 103

• no indexes,
• number of rows retrieved in a sample of 100 - all with the status O (Open),
• disabled dynamic sampling (automatic statistics),
Figure 12 shows the execution plan for the baseline experiment.

Fig. 12. The execution plan for table CUSTOM3, no current statistics,

there are no indexes

As it is shown in Figure 13 the index set-up without calculating statistics resulted
in the decrease of the cost of the query to 42. Figure 14 shows the cost of a query
after collecting statistics, but only for the same table CUSTOM3. Execution
analysis only for this table resulted in the return to the baseline, i.e. to the full
overview of the table row by row.

Fig. 13. The execution plan for CUSTOM3, lack of statistics, the index on the columns

STATE, CUST_ID, LAST_NAME, FIRST_NAME

104 ZESZYTY NAUKOWE AKADEMII MORSKIEJ W GDYNI, nr 84, październik 2014

Fig. 14. The execution plan for CUSTOM3, statistics collected only for the table,

the index on the columns STATE, CUST_ID, LAST_NAME, FIRST_NAME

Gathering statistics both for the table and its index, see Figure 15, allows for
the reduction of execution costs to 3 processor cycles only, and to eliminate
the problem of inadequate data analysis.

Fig. 15. The execution plan for CUSTOM3, statistics collected for the table and the index,
an index defined for the columns STATE, CUST_ID, LAST_NAME, FIRST_NAME

4. CONCLUSION

The results of experiments presented in this paper show how many factors can
affect the cost of a query and its time. As the experiment results show the following
factors are important to reduce both the cost and the time of a query: indexing, lack
of indexes on the table, improperly defined indexes, outdated statistics on tables
and indexes. Errors in the query formulation are adverse, too. They significantly
decrease the efficiency of cost-based optimizer, as it is shown in the second
experiment.

R. Pacholewicz, Assessment of impact of selected factors on the effectiveness of cost-based optimizer... 105

The experiments confirm the relevance of the query analysis, and thus the analysis
of the query execution plan. Analysis of query plans allows on:
• verification of the assumed indexing,
• verification of the cost of execution,
• the assessment of the volume of the downloaded bytes,
• trace the individual steps that the database must go through to send the

requested data to the user.
Another way to increase efficiency is to optimize query execution plans. On the
other hand a purely technical solution would be to improve hardware, it is, to
provide some additional equipment, including processors, disks and RAM
exchange for more efficient ones.

REFERENCES

[1] Gurry M., Oracle SQL Tunning Pocket Reference, Wydawnictwo Helion, Gliwice
2002.

[2] Zakrzewicz M., http://explainit.pl/blog/?paged=2 [online], [09.09.2014].
[3] Cyran M., Lane P., Oracle Database Concepts, 10g Release 1 (10.1)[online], Oracle

Press, December 2003, http://docs.oracle.com/cd/B12037_01/server.101/b10743.pdf
[16.06.2014].

[4] Ashdown L., Kyte T., Oracle Database Concepts, 11g Release 2 (11.2)[online], Oracle
Press, September 2011, http://docs.oracle.com/cd/E29505_01/server.1111/e25789/
process.htm [16.06.2014].

[5] http://pl.wikipedia.org/wiki/Indeks_%28bazy_danych%29 [online],[16.06.2014].
[6] Muryjas P., Skublewska-Paszkowska M., Gutek D., Współczesne technologie informa-

tyczne. Eksploatacja baz danych., Politechnika Lubelska [online], Lublin 2011,
http://www.bc.pollub.pl/dlibra/docmetadata?id=675&from=&dirids=1&ver_id=&lp=1
&QI= [16.06.2014].

