

Scientific Journal of Gdynia Maritime University

Scientific Journal of Gdynia Maritime University, No. 127, September 2023 27

No. 127/23, 27–41 Submitted: 13.04.2023
ISSN 2657-6988 (online) Accepted: 18.04.2023
ISSN 2657-5841 (printed) Published: 30.09.2023
DOI: 10.26408/127.03

AUTHENTICATED WIFI-BASED WIRELESS DATA
TRANSMISSION FROM MULTIPLE SENSORS

THROUGH A LABORATORY STAND BASED ON
COLLABORATION BETWEEN ATMEGA2560

AND ESP32 MICROCONTROLLERS

Mostafa Abotaleb
PhD Student at The Doctoral School of Gdynia Maritime University, 81-87 Morska St.,
81–225 Gdynia, Poland, ORCID 0000-0002-2670-5928, e-mail: m.abotaleb@sd.umg.edu.pl

Abstract: The use of wireless technology in the field of instrumentation is rapidly expanding
due to many reasons such as lower installation and commissioning cost than those incurred
by wired technologies and a higher level of security provided by authenticated encrypted data
transaction, in addition to a decreased level of system complicity, manifested in eliminating or
limiting the need for cabling or its accessories. This article will discuss a proposed technique
to perform authenticated wireless WiFi data transmission from multiple sensors to the control
station depending on a laboratory stand for the purpose of analysing the principle of
coexistence between wireless technologies dedicated to industrial automation, such as
wireless HART, and general purpose technologies, such as WiFi and Bluetooth Low Energy
BLE.

Keywords: Data Authentication, WiFi, WebSerial, ESP32, Arduino Mega 2560, Python,
Websockets.

1. INTRODUCTION

Wireless HART and ISA100.11a are the only technologies recognised as wireless
standards dedicated to industrial automation. Other general purpose wireless
technologies, such as WiFi and Bluetooth Low Energy BLE, can also be used in
industrial automation. However, the level of security is lower than that rendered by
technologies such as wireless HART and ISA100.11a. The principle of coexistence
[LaSorte, Seidman and Quang 2016; Al Kala, Seidman and Quang 2018; Gomaa
2020;] between both types of technologies is a key element which plays an important
role in enhancing the reliability level of the wireless network in the industrial plant.
This enhancement is manifested by two concepts. The first concept is that the
coexistence principle achieves an easier process of integration between wired

Mostafa Abotaleb

28 Scientific Journal of Gdynia Maritime University, No. 127, September 2023

classical analogue standards such as 4–20 mA and technologies such as wireless
HART.

The second concept is that the coexistence principle renders a certain degree of
verification for the measured data if a specific variable was measured by a wireless
HART transmitter and also by a classical 4–20 mA transmitter, the reading from
which is sent to the host using general purpose technologies such as WiFi or BLE.
Thus, the host will compare the readings obtained from both transmitters to verify if
they are identical or not. This verification process can upgrade the capability of the
wireless network so that it could perform automation tasks dedicated to control and
safety purposes and not only monitoring or alarming purposes.

In this article, a similar approach will be discussed through a laboratory stand
based on using both ATmega2560 [Arduino 2023] and ESP32 [Espressif Systems
2023] controllers. The ATmega2560 controller was chosen for two reasons. The first
reason is its ability to receive up to 16 analogue inputs, which will be helpful in the
assessment process for the capability of performing authenticated data transmission
from higher number of sensors. The second reason is its capability to receive
analogue inputs with a voltage level from 0 to 5 VDC, which makes it an appropriate
choice when processing signals from 4–20 mA analogue transmitters, as a 4–20 mA
signal can easily be converted to a 1–5 VDC signal through a 250 ohms shunt
resistor. The ESP32 controller was chosen particularly due to the diversity it renders
when handling data wirelessly as it adopts both WiFi (in both ISM bands of 2.4 GHz
and 5 GHz) and BLE technologies using multiple protocols such as ESP-Now
[Randomnerdtutorials January 2020b], ESP webserial, ESP mesh [Randomnerd-
tutorials November 2020] and ESP client-server [Randomnerdtutorials January
2020a].

The laboratory stand discussed in this article will be based on using WiFi
technology in conjunction with the WebSerial websocket [Randomnerdtutorials
August 2021; Techtutorialsx 2022]. Simulated measured data from 1 to 5 VDC will
be applied to 8 analogue inputs of ATMEGA2560 controller through
8 potentiometers. The measured data detected by ATMEGA2560 will be sent to
ESP32 controller using serial communication. ESP32 will send the measured data to
the host through using WiFi technology and the host controller will receive the sent
data through using the WebSerial websocket. The ATMEGA2560 controller will
have a single PWM analogue output which will be identical to one of the measured
analogue inputs according to a specific authenticating timing pattern toggling
between the eight inputs to chose one of them to be passed as an output signal. This
timing pattern will be based on timers toggling between the outputs of
ATMEGA2560 controller and authenticated by a Python program accessing the
WebSerial websocket [DelCastillo 2021] and sending confirmation messages to the
ESP32 controller affirming that the analogue output of the ATMEGA2560 is
correspondent to a specific analogue input at a specific time. This analogue PWM
output will subsequently be converted to a 4–20 mA current signal, which will be

 Authenticated WiFi-Based Wireless Data Transmission from Multiple Sensors Through a Laboratory
Stand Based on Collaboration Between ATMEGA2560 and ESP32 Microcontrollers

Scientific Journal of Gdynia Maritime University, No. 127, September 2023 29

integrated into a wireless HART network using a wireless HART adapter such as the
BULLET adapter manufactured by Pepperl+Fuchs [Pepperl+Fuchs 2015], and then
sent to the same host controller using wireless HART technology. At the host
controller, a verification process will be used to check the degree of similarity
between the two readings. The process of converting the PWM output from the
ATMEGA2560 controller into 4–20 mA and its integration into wireless HART
network will be discussed in a later article.

In this article, the discussion will be focused on the idea of the technique
adopted to perform two types of communication tasks simultaneously. The first type
is the serial communication Between ATMEGA2560 controller and ESP32
controller. The second type of communication is the WiFi based wireless
communication between ESP32 controller and the host controller through the
WebSerial websocket controlled by a Python program. A Graphical User Interface
designed by Visual Basic at the host controller station will collect the data sent
wirelessly from the 8 simulated sensors and display it to the user.

Ultimately, the article will highlight the recommended techniques proposed
during programming both ATMEGA2560 and ESP32 controllers using arduino.ide
when performing serial and WiFi based wireless communication tasks, so that
problems which lead to the controllers crashing, such as overloading the serial
buffer, or timing problems can be avoided. The recommended techniques are based
on experimental trials conducted on the laboratory stand.

2. LABORATORY STAND

As described earlier and as illustrated in Figure 1, the laboratory stand consists of
eight potentiometers, one ATMEGA2560 controller, one ESP32 controller and one
LED. The eight potentiometers are connected to the analogue inputs of the
ATMEGA2560 controller from A0 to A7.

Analogue output 4 is connected to the LED through a 230 Ω resistor. The serial
communication [Arduino References 2019] between ATMEGA2560 and ESP32
controllers is performed through the second serial port at each of them. Tx2 of each
controller is connected to Rx2. Similarly, Rx2 is connected to Tx2. Both serial wires
are connected through 10 kΩ resistors in order to avoid damaging the ESP32
controller with the higher voltage level at the ATMEGA2560 controller.
The resistors will reduce the 5 VDC voltage level from ATMEGA2560 to a 3 VDC
voltage level at the ESP32 controller. For the same reason, ATMEGA2560 controller
was chosen to receive the simulated 1–5 VDC signals as analogue inputs from
sensors as the ESP32 controller can only tolerate analogue inputs of voltage up to
3.3 VDC. The lower range and span at the ESP32 controller may lead to less accurate
readings with an increased margin of error when dealing with the 4–20 mA analogue
standard as it is easier to be converted into 1-5 VDC (as in the case of most analogue

Mostafa Abotaleb

30 Scientific Journal of Gdynia Maritime University, No. 127, September 2023

input cards) than 1–3.3 VDC. Both the ATMEGA2560 and ESP32 controllers were
programmed using arduino ide.

Fig. 1. The Laboratory Stand. The part surrounded by red dashed line will not be discussed
in this article

In this article, the most important features of both codes uploaded to both

controllers will be discussed. In the setup section of the program at ATMEGA2560
and as shown in figure 2, the first line of the code is used to start serial
communication with the computer to which the ATMEGA2560 is connected through
the serial port with a 9600 baud rate. Without the first line, it will not be possible to
upload the code from the computer to the ATMEGA2560 controller. The second line
of the code is dedicated to setting up the second serial port at the ATMEGA2560
controller so that it can be ready to communicate with the serial port of ESP32
controller.

Fig. 2. Setup of The ATMEGA2560 Controller

Similarly and as illustrated in Figure 3, the first line of the set up section in

ESP32 is dedicated to communication between the computer serial port and the
ESP32 controller with a baud rate of 115200, while the second line is dedicated to
setting up the second serial port to communicate with ATMEGA2560 controller with
a baud rate of 9600. Additionally, arduino.h library should be included so that serial

 Authenticated WiFi-Based Wireless Data Transmission from Multiple Sensors Through a Laboratory
Stand Based on Collaboration Between ATMEGA2560 and ESP32 Microcontrollers

Scientific Journal of Gdynia Maritime University, No. 127, September 2023 31

communication can take place between both the ESP32 and ATMEGA2560
controllers. Here, it can be observed that the pins of Tx2 and Rx2 at ESP32 should
be defined, which is not the case at ATMEGA2560 controller where Tx2 and Rx2
pins are dedicated only to performing serial communication.

However, in ESP32 the Tx2 and Rx2 pins can also be used as GPIOs (General
Purpose Input Output). WebSerial [Sharma 2021] is a Serial monitor for ESP8266
and ESP32 microcontrollers that can be accessed remotely via a web browser. The
webpage is stored in the program memory of the microcontroller.

Firstly, in order to set up the ESP32 controller to perform WiFi communication
with the webserial websocket, the following libraries should be included in the code:
WiFi.h, ESPAsyncWebServer.h, WebSerial.h and AsyncTCP.h [Randomnerd-
tutorials August 2021; Techtutorialsx 2022]. After declaring these libraries at the
beginning of the code, three important lines of code should be added to the setup
function as illustrated in Figure 3. The first line is used to define the WiFi mode of
operation.

In this article, the ESP32 will operate as a soft access point [Techtutorialsx
2022] using the softAP() method.

In this mode, the ESP32 controller will create its own WiFi network with an
independent SSID and password defined by the user. Based on the
ESPAsyncWebServer.h library included in the system, the (http) web server will be
set up on port 80, and then WebSerial will be initialised on the web server through
using the begin() method as illustrated in the fourth line of Figure 3. The fifth line of
Figure 3 is used to start the http web server on port 80, while the sixth line is used to
define the callback function using the msgCallback() method at the WebSerial
object. The call back function is used to receive messages sent from the WebSerial
websocket to the ESP32 controller.

Fig. 3. Setup of The ESP32 Controller

As illustrated in Figure 4, WebSerial is continuously receiving the messages

sent from ESP32 controller. However, if it is meant to send messages from the host
computer to the ESP32 controller, this should be done manually by writing the
message in the space indicatedand then pressing the (Send) command button.

Mostafa Abotaleb

32 Scientific Journal of Gdynia Maritime University, No. 127, September 2023

Fig. 4. The WebSerial Remote Monitor

Accordingly, and in order to implement an automated authentication process for

the data sent from the ESP32 controller to the host computer, a Python program is
used to undertake such a task. Simplicity, availability of certified references and
documentation on the Internet and being user friendly are the most important
advantages of Python as a programming language. By using a specific Python code,
The WebSerial websocket will be accessed and controlled as indicated in Figure 5.

Fig. 5. The WebSerial Remote Monitor Automated using Python

An automated response will be activated, confirming the reception of a specific

piece information. The code is based on three libraries: websockets, asyncio and
time. The websocket and asyncio libraries are used to connect to the URL of the
websocket and to send/receive information to/from the websocket [Solomon 2019;
DelCastillo 2021]. async with websockets.connect(url) as ws: is the command used
to connect to the websocket URL. await ws.recv() is the command used to receive
data from the URL into a string variable, while await ws.send () is the command
used to send data from a string variable to the websocket. Without the time library,
the Python code will be executed only once.

 Authenticated WiFi-Based Wireless Data Transmission from Multiple Sensors Through a Laboratory
Stand Based on Collaboration Between ATMEGA2560 and ESP32 Microcontrollers

Scientific Journal of Gdynia Maritime University, No. 127, September 2023 33

Therefore, a timer function is required to repeat the execution of the code and
also to pause the program after information transaction (sending /receiving) so that
the program does not crash.

3. CONTROLLERS’ PROGRAMMING AND AUTHENTICATION

At first sight, it might seem very easy to send the measured data from multiple
sensors connected to the ATMEGA2560 controller to the ESP32 controller through
serial communication between each of them. The ESP32 controller will then send it
to WebSerial through using WiFi. However, if authenticated transmission is
required, this will impose an additional complication on the code developed, This is
necessary for the WebSerial remote monitor to be allowed to send automated
authenticating messages for the data sent. Here, authentication is required mostly to
ensure that both sides (ATMEGA2560 and ESP32 on one side and the WebSerial
websocket on the other side) will know that the current analogue output will
correspond to which analogue input from which sensor. Transition of the analogue
output values from sensor to another will be controlled by a timing pattern at the
ATMEGA2560 controller. For the ESP32 controller, it will have to receive the
authentication messages from WebSerial through WiFi and also receive the data
measured from the ATMEGA2560 controller through serial communication. It will
also start the communication process by sending a command to the ATMEGA2560
controller through the serial port in addition to sending the data measured to
WebSerial. Accordingly, the ESP32 controller will have to perform simultaneous
serial and wireless communication tasks. This is not recommended as the probability
of overloading the serial buffer will be very high if the timing pattern is not
considered carefully. If the serial buffer is overloaded, it will immediately lead to the
ESP32 controller crashing, and it will have to be reset. In order to evade such
a scenario, some common programming techniques should be avoided.

As illustrated in Figure 6, some programmers may depend on the delay()
function in creating their timing pattern to toggle between the readings from multiple
sensors so that one of them can be passed to the analogue output. The excessive use
of the delay() function is not recommended [Santos 2015; Arduino Forum 2017;
Cura 2020] due to the fact that the timers generated by such a function are not as
accurate as they should be. Using the delay() function is only recommended to pause
the program for no more than a few seconds after giving commands related to
sending data serially or wirelessly, in order to give the other side a chance to receive
the data comfortably without overloading of the serial buffer Therefore, it is not
advisable to make the core of the developed code based on the delay() function.
As also illustrated in Figure 6, the data measured from each sensor are sent separately
in an independent message and authenticated by another independent message from
WebSerial. For a large number of sensors, this will increase the complexity of the

Mostafa Abotaleb

34 Scientific Journal of Gdynia Maritime University, No. 127, September 2023

code as well as the latency of the system. Additionally, using such a technique will
lead to an increased number of messages waiting at the serial buffer, which will
eventually lead to the controller crashing (ATMEGA2560 or ESP32) due to
an overloaded serial buffer.

As illustrated in Figure 7, some programmers might tend to use built-in timers
in both ESP32 [Joseph 2022] or ATMEGA2560 [Liang 2013; Stoffregen 2015;
Toptechboy 2018] controllers in conjunction with interrupt subroutines to perform
tasks like reading to/from the serial port at specific time intervals, however attention
should be paid that any timer subroutine will stop the execution of the main program
at the loop function till this subroutine is executed, which might be a real problem
particularly with the ESP32 controller, as stopping the main program will lead to
disconnection of the WiFi network generated by the controller, which will
consequently lead to the Python program crashing when accessing the WebSerial
websocket at the host controller station.

 Fig. 6. Programming Technique based on using delay() function and multiple
authentication messages (NOT RECOMMENDED)

In order to avoid the complications described above, the following technique

was adopted (Fig. 8) in this laboratory stand to guarantee a stable and accurate
performance. Regarding the timing pattern, which will toggle between the data
measured from the simulated sensors to pass one of them as an analogue output,
it will be based on using the millis() function [Cura 2020; Arduino References 2022]
to generate more accurate time intervals without the need to pause the program when
these timers are running. Regarding the format by which serial communication
between the ATMEGA2560 and ESP32 controllers will take place, it will take the
form of a single string variable containing all the measured data from all sensors

 Authenticated WiFi-Based Wireless Data Transmission from Multiple Sensors Through a Laboratory
Stand Based on Collaboration Between ATMEGA2560 and ESP32 Microcontrollers

Scientific Journal of Gdynia Maritime University, No. 127, September 2023 35

[Arduino References 2021]. This string variable will be sent wirelessly to the
WebSerial websocket. The Python program at the host controller station will save
the received data string into a text file. By using text manipulation in Python, the last
part of the string will be detected. By manipulating the last part of the received string,
the received information will be authenticated. The last part of the string received
will include two letters (T) and (F). (T) refers to the information sent to the
WebSerial remote monitor from the controllers' side, while (F) refers to the
information sent from the WebSerial remote monitor to the controllers side.

Fig. 7. Programming Technique based on using buit-in timers and their interrupts
subroutines (NOT RECOMMENDED)

Table 1 illustrated how authentication process is achieved through the

significance of the digits detected following both of the letters T and F. As illustrated
in Figure 9, the reading from each transmitter will be extracted from the stored
information in the text file through using text manipulation in Visual Basic 6.
Additionally, Visual Basic GUI will display from which simulated sensor the data
will be passed to the analogue output after being authenticated. The displayed
readings from the simulated sensors are mapped from the (0–255) range to the
(1–5 VDC) range. In order to avoid the programs crashing at either the
ATMEGA2560 controller or the ESP32 controller due to simultaneous serial and
wireless communication, two important methods were used. The first method of the
WiFi object is disconnect(), while the second method of the same object is

Mostafa Abotaleb

36 Scientific Journal of Gdynia Maritime University, No. 127, September 2023

reconnect() [Randomnerdtutorials February 2021]. The disconnect() method was
used in case a serial information was detected at the serial buffer of the ESP32's
second serial buffer (Serial2.available > 0). The reconnect() method was used when
the ESP32 controller was about to send data to the WebSerial websocket.

Fig. 8. Proposed technique in the laboratory stand based on millis() function and single
string message with authenticating part concated to the end of the message

Fig. 9. GUI based on Visual Basic

 Authenticated WiFi-Based Wireless Data Transmission from Multiple Sensors Through a Laboratory
Stand Based on Collaboration Between ATMEGA2560 and ESP32 Microcontrollers

Scientific Journal of Gdynia Maritime University, No. 127, September 2023 37

Table 1. Examples of authentication messages and their significance. Authentication
messages are illustrated at the ends of the string stream shown in Figure 5

Source: own study.

Message Previous Analogue
Output

Current Analogue
Output

Significance

T01F Null Passed from 1st sensor Controllers informs WebSerial that
Analogue output has started being
passed from 1st sensor

TF01 Null Passed from 1st sensor WebSerial confirms that analogue
output corresponds to the reading
of the 1st sensor

T01F01 Passed from 1st sensor Passed from 1st sensor Outputting from 1st sensor till timer
toggles the output

T02F01 Passed from 1st sensor Passed from 2nd sensor Controllers informs WebSerial that
Analogue output has started being
passed from 2nd sensor

T01F02 Passed from 1st sensor Passed from 2nd sensor WebSerial confirms that analogue
output corresponds to the reading
of the 2nd sensor

T02F02 Passed from 2nd sensor Passed from 2nd sensor Outputting from 2nd sensor till timer
toggles the output

T02F03 Passed from 2nd sensor Passed from 3rd sensor WebSerial confirms that analogue
output corresponds to the reading
of the 3rd sensor

T03F03 Passed from 3rd sensor Passed from 3rd sensor Outputting from 3rd sensor till timer
toggles the output

T01F08 Passed from 8th sensor Passed from 1st sensor Controllers informs WebSerial that
Analogue output started to be
passed from the 8th sensor

T08F01 Passed from 8th sensor Passed from 1st sensor WebSerial confirms that analogue
output corresponds to the reading
of the 8th sensor

T08F08 Passed from 8th sensor Passed from 8th sensor Outputting from 8th sensor till timer
toggles the output

Mostafa Abotaleb

38 Scientific Journal of Gdynia Maritime University, No. 127, September 2023

4. FUTURE WORK

In order to improve understanding of the principle of coexistence between wireless
technologies, the laboratory stand will be the backbone of several future articles
demonstrating the improved performance of a given wireless instrumentation
system, rendered by the principle of coexistence between wireless technologies.

In order to improve understanding of such a phenomenon, Figure 10 illustrates
three RSSI (Received Signal Strength Indicator) levels of the wireless WiFi signal
generated by the ESP32 controller and measured by a WiFi analyser with respect to
the distance from the host controller. One example for future research is to explore
the possibilities of increasing the RSSI levels of the WiFi signal generated by the
ESP32 controller at farther distances through using other protocols, such as
ESP-NOW, in conjunction with ESP-WebSerial.

Fig. 10. Decreased (RSSI) Levels of -35,-57 and -74 dbm corresponding to distances

of 1, 6 and 12 meters from Host Controller, respectively

 Authenticated WiFi-Based Wireless Data Transmission from Multiple Sensors Through a Laboratory
Stand Based on Collaboration Between ATMEGA2560 and ESP32 Microcontrollers

Scientific Journal of Gdynia Maritime University, No. 127, September 2023 39

5. DISCUSSION

This article has introduced a description for a laboratory stand, through which an
authenticated wireless WiFi communication and serial communication.can take
place simultaneously. The purpose of this stand is to analyse the possibilities of
coexistence between wireless technologies: those dedicated to industrial automation,
such as wireless HART, and those dedicated to general purpose use, such as WiFi
and BLE. The authentication principle of transmitted information from multiple
sensors was implemented in this laboratory stand through programming techniques
based on the cooperation between ATMEGA2560 and ESP32 controllers on one side
and the WebSerial remote monitor (Automated by Python) on the other side. Based
on the experimental trials conducted on the stand, the article recommended avoiding
some programming techniques in order to achieve successful simultaneous serial and
wireless communication when using both ATMEGA2560 and ESP32 controllers.

Techniques based on excessive use of the delay() function and individual
authentication messages from each sensor will lead to the program crashing due to
overloading of the serial buffer with huge number of messages corresponding to each
sensor. Techniques based on using timers and the interrupt subroutine should be
considered carefully, especially with the ESP32 controller, as activating the interrupt
subroutine immediately deactivates the WiFi generated by the ESP32 controller.
The programming technique adopted by the laboratory stand and recommended by
the article is based on three basic principles.

The first principle is to limit the number of messages processed by the stand to
a single string message in order to avoid the program crashing. This string message
contains the readings from all sensors in addition to the authentication information
at the end of the message. The authentication information in the last part of the
message will change according to a specific timing pattern.

The second principle on which the proposed technique is based is to depend on
the millis() function to create the timing pattern, which toggles between the sensors
to obtain a more accurate timing pattern and also to avoid the execution of the main
program being stopped by using the delay() function.

The third principle is to disconnect (using the disconnect() method) the WiFi at
the ESP32 controller, whenever serial information was detected from the
ATMEGA2560 controller, and then reconnecting the WiFi (using the reconnect()
method) when the serial information is received. In the future, more elements will
be added to this laboratory stand to achieve the principle of coexistence between
different wireless technologies. Wireless HART adapters, other wireless WiFi and
BLE modules are examples of these elements. Additionally, more ESP32 controllers
will be attached to the stand in order to examine the coexistence between different
wireless protocols provided by ESP32 controller, such as ESP-NOW, ESP- mesh
and ESP Client-Server.

Mostafa Abotaleb

40 Scientific Journal of Gdynia Maritime University, No. 127, September 2023

REFERENCES

Al Kala, M.O., Seidman, S., Quang, J., 2018, An Outlook on Wireless Coexistence with Focus on
Medical Devices, IEEE Electromagnetic Compatibility Magazine, vol. 7, no. 3, pp. 60–64.

Arduino Forum, 2017, Why Is Using Delay Bad? https://forum.arduino.cc/t/why-is-using-delay-
bad/465334/1 (11.04.2023).

Arduino References, 2019, Communication Function: Serial, https://www.arduino.cc/reference/en/lan-
guage/functions/communication/serial/ (11.04.2023).

Arduino References, 2021, Datatypes: Stringobject String(), https://www.arduino.cc/reference/en/lan-
guage/variables/data-types/stringobject/ (11.04.2023).

Arduino References, 2022, Time Function Millis(), https://reference.arduino.cc/reference/en/lan-
guage/functions/time/millis/ (11.04.2023).

Arduino, 2023, Arduino® MEGA 2560 Rev3Product Refrence Manual, SKU: A00067,
https://fiona.dmcs.pl/~cmaj/SM_2st/arduino-mega2560_R3-datasheet.pdf (12.04.2023).

Cura, M.G., 2020, Industrial Arduino Millis () vs Delay (), Boot & Work Corp. S.L.,
https://www.industrialshields.com/blog/arduino-industrial-1/post/industrial-arduino-millis-vs-
delay-248 (11.04.2023).

DelCastillo, G., 2021, Python Websocket Server, https://github.com/ParametricCamp/Tutorial
Files/tree/master/Misc/WebSockets (11.04.2023).

Espressif Systems, 2023, Arduino-ESP32 Release 2.0.6.
Gomaa, R., 2020, Coexistence Study of 2.4 GHZ Wireless Technologies for Nuclear and Radiological

Applications, International Journal of Engineering Research & Technology (IJERT), vol. 9,
no. 8.

Joseph, J., 2022, ESP32 Timers & Timer Interrupts, https://circuitdigest.com/microcontroller-
projects/esp32-timers-and-timer-interrupts (11.04.2023),

LaSorte, N.J., Seidman, S., Quang, J., 2016, Experimental Method for Evaluating Wireless Coexistence
of Wi-Fi Medical Devices, Biomedical Instrumentation and Technology, vol. 50(s6), pp. 18–25.

Liang, O., 2013, Arduino Timer and Interrupt Tutorial, https://oscarliang.com/arduino-timer-and-
interrupt- tutorial /#:~:text=On%20the%20Arduino% 20Mega%20we,and%2013%3A%20
controlled%20by%20Timer0 (11.04.2023),

Pepperl+Fuchs, 2015, WHA-BLT-F9D0-N-A0 BULLET Wireless HART Adapter Instruction Manual,
http://files.pepperl-fuchs.com/webcat/navi/productInfo/doct/tdoct4909__eng.pdf
?v=20230403152657 (12.04.2023).

Randomnerdtutorials, January 2020a, ESP32 Client-Server Wi-Fi Communication Between Two
Boards, https://randomnerdtutorials.com/esp32-client-server-wi-fi/ (12.04.2023).

Randomnerdtutorials, January 2020b, Getting Started with ESP-NOW (ESP32 with Arduino IDE),
https://randomnerdtutorials.com/esp-now-esp32-arduino-ide/ (12.04.2023).

Randomnerdtutorials, November 2020, ESP-MESH with ESP32 and ESP8266: Getting Started
(PainlessMesh Library), https://randomnerdtutorials.com/esp-mesh-esp32-esp8266-painless-
mesh/ (12.04.2023).

Randomnerdtutorials, February 2021, ESP32 Useful Wi-Fi Library Functions (Arduino IDE),
https://randomnerdtutorials.com/esp32-useful-wi-fi-functions-arduino/ (11.04.2023).

Randomnerdtutorials, August 2021, ESP32 WebSerial: Web-based Remote Serial Monitor,
https://randomnerdtutorials.com/esp32-webserial-library/ (11.04.2023).

https://forum.arduino.cc/t/why-is-using-delay-bad/465334/1
https://forum.arduino.cc/t/why-is-using-delay-bad/465334/1
https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/variables/data-types/stringobject/
https://www.arduino.cc/reference/en/language/variables/data-types/stringobject/
https://reference.arduino.cc/reference/en/language/functions/time/millis/
https://reference.arduino.cc/reference/en/language/functions/time/millis/
https://fiona.dmcs.pl/%7Ecmaj/SM_2st/arduino-mega2560_R3-datasheet.pdf
https://www.industrialshields.com/blog/arduino-industrial-1/post/industrial-arduino-millis-vs-delay-248
https://www.industrialshields.com/blog/arduino-industrial-1/post/industrial-arduino-millis-vs-delay-248
https://github.com/ParametricCamp/TutorialFiles/tree/master/Misc/WebSockets
https://github.com/ParametricCamp/TutorialFiles/tree/master/Misc/WebSockets
https://circuitdigest.com/microcontroller-projects/esp32-timers-and-timer-interrupts
https://circuitdigest.com/microcontroller-projects/esp32-timers-and-timer-interrupts
https://randomnerdtutorials.com/esp32-client-server-wi-fi/
https://randomnerdtutorials.com/esp-now-esp32-arduino-ide/
https://randomnerdtutorials.com/esp-mesh-esp32-esp8266-painlessmesh/
https://randomnerdtutorials.com/esp-mesh-esp32-esp8266-painlessmesh/
https://randomnerdtutorials.com/esp32-useful-wi-fi-functions-arduino/
https://randomnerdtutorials.com/esp32-webserial-library/

 Authenticated WiFi-Based Wireless Data Transmission from Multiple Sensors Through a Laboratory
Stand Based on Collaboration Between ATMEGA2560 and ESP32 Microcontrollers

Scientific Journal of Gdynia Maritime University, No. 127, September 2023 41

Santos, R., 2015, Why You Shouldn’t Always Use the Arduino Delay Function,
https://randomnerdtutorials.com/why-you-shouldnt-always-use-the-arduino-delay-function/
(11.04.2023).

Sharma, A., 2021, WebSerial: Remote Serial Monitor for ESP8266 and ESP32, https://github.com/
ayushsharma82/WebSerial (11.04.2023).

Solomon, B., 2019, ESP32: Async IO in Python: A Complete Walkthrough, https://realpython.
com/async-io-python/ (11.04.2023).

Stoffregen, P., 2015, TimerOne Modified Library, https://github.com/PaulStoffregen/TimerOne
(11.04.2023).

Techtutorialsx, 2022, ESP32: WebSerial Console Over Soft AP, https://techtutorialsx.com/2021/07/23/
esp32-webserial-console-over-soft-ap/ (11.04.2023).

Toptechboy, 2018, Lesson 30: Advanced Software Interrupt Techniques for Reading Serial Data with
Arduino, https://toptechboy.com/lesson-30-advanced-software-interrupt-techniques-for-reading-
serial-data-with-arduino/ (11.04.2023).

https://randomnerdtutorials.com/why-you-shouldnt-always-use-the-arduino-delay-function/
https://github.com/ayushsharma82/WebSerial
https://github.com/ayushsharma82/WebSerial
https://realpython.com/async-io-python/
https://realpython.com/async-io-python/
https://github.com/PaulStoffregen/TimerOne
https://techtutorialsx.com/2021/07/23/esp32-webserial-console-over-soft-ap/
https://techtutorialsx.com/2021/07/23/esp32-webserial-console-over-soft-ap/
https://toptechboy.com/lesson-30-advanced-software-interrupt-techniques-for-reading-serial-data-with-arduino/
https://toptechboy.com/lesson-30-advanced-software-interrupt-techniques-for-reading-serial-data-with-arduino/

