

Scientific Journal of Gdynia Maritime University

Scientific Journal of Gdynia Maritime University, No. 125, March 2023 7

No. 125/23, 7–24 Submitted: 23.11.2022
ISSN 2657-6988 (online) Accepted: 19.01.2023
ISSN 2657-5841 (printed) Published: 31.03.2023
DOI: 10.26408/125.01

FORMAL VERIFICATION OF STPA WITH MODEL CHECKING

Ryeonggu Kwon1*, Gihwon Kwon2
1,2 Kyonggi University, 6, Seowon 4-gil, Gwanak-gu, Seoul, Republic of Korea, Department

of Computer Science,
1 e-mail: rkkwon@kyonggi.ac.kr, ORCID 0000-0002-4942-247X
2 ORCID 0000-0002-8221-4939
* Corresponding author

Abstract: As technology advances, hardware-centric systems are rapidly moving towards
software-centric ones, and their complexity is rapidly increasing. In particular, systems directly
related to safety require thorough verification. Model checking exhaustively explores the state
space of the abstracted system to check whether properties written in a logical formula are
achieved. In this paper, the control algorithm of the controller is verified using model checking
to discover risk scenarios during the STPA steps. Two case studies are conducted using the
widely used model checkers NuSMV and UPPAAL. We then explain the empirical results and
compare two model checkers based on their characteristics. Finally, we discuss the benefits
of applying model checking in the process of STPA.

Keywords: formal verification, model checking, STPA.

1. INTRODUCTION

With the advancement of technology, systems are rapidly changing from hardware-
centric to software-centric. In addition, as control and interaction between
components become very important in a software-oriented system, and the risk of
the system is directly related to safety, the importance of a new risk analysis
technique has increased. As the existing risk analysis technique has limitations in
applying it to software-oriented systems, an efficient risk analysis technique was
needed to overcome this situation, therefore STPA (System-Theoretic Process
Analysis) was developed [Leveson and Thomas 2018]. However, in order to perform
the process of STPA, human intervention such as a safety analyst is required, many
parts must be analysed manually, and a lot of effort is required when deriving a risk
scenario for STPA. In particular, when deriving a risk scenario, a method of building
a context table of a process model is used. However, this also required human
intervention, and other systematically organised methods are needed to achieve
completeness. As such a systematic method, model checking [Baier, Katoen

Ryeonggu Kwon, Gihwon Kwon

8 Scientific Journal of Gdynia Maritime University, No. 125, March 2023

and Larsen 2014], which is one of the representative techniques of formal
verification, may be used. In this paper, model checking is used to verify that the
control algorithm of the controller sufficiently achieves the safety constraint in the
process of STPA. Once a counterexample is obtained as a result of model checking,
it is used to identify risk scenarios in which safety constraints are not achieved and
to refine the control algorithm.

For model checking, NuSMV and UPPAAL, which are widely used in academia
and industry, were selected. The structure of this paper is as follows. Sections 2 and
3 introduce related studies applying model checking to backgrounds and STPA.
Section 4 details research interests and how to apply model checking to STPA.
Section 5 shows how to build a model and write safety properties using each model
checker for a case study of the Door Interlock System and Auto-Hold System.
Section 6 discusses the empirical results of carrying out case studies and explains the
characteristics of each model checker and what roles and boundaries it has when
used in STPA. In addition, the advantages of the proposed method when applied to
STPA are explained. The last section presents a summary of the paper and future
research.

2. BACKGROUNDS

2.1. STPA

Recently, as the limitations of existing risk analysis methods have been revealed,
a method that can analyse risks from a new perspective is needed, due to the
increasing complexity of the software in the whole system. It has become difficult
to limit the factors that can cause accidents to just a specific component problem.
In addition, if you look at the recent accident patterns, not only the system but also
various external factors (people, policies, environment, etc.) cause accidents.
Accordingly, in 2012, STPA, a risk analysis method with a new perspective different
from the existing risk analysis method, was announced. STPA basically believes that
accidents are caused by control problems between systems or components rather than
a failure of specific components (Component Failure).

Therefore, when STPA analyses the system, rather than listing and combining
all components (or functions), the system is structured and understood around
important control relationships that affect safety. Therefore, by using STPA, it is
easy to understand and perform risk analyses by abstracting a complex system
composed of numerous components.

Formal Verification of STPA with Model Checking

Scientific Journal of Gdynia Maritime University, No. 125, March 2023 9

2.2. Model checking

Model checking is one of the formal techniques that abstracts the system to be
verified as states and transitions, expresses the properties to be achieved in a logical
formula, and checks whether there are any violating properties. In general, the
abstract model is built with a finite state machine, and the properties are written in
a logical formula such as CTL (computation tree logic), LTL (linear temporal logic)
or TCTL (timed computation tree logic). The model checker accepts both the model
and the property as inputs and checks whether the property is satisfied in the model
by thoroughly examining the state space. If the property is not satisfied in the model,
it provides a counterexample (or the result of the simulation). By analysing the traces
of counterexamples, we can find cases where the property is violated, and the
property can be achieved by modifying the model.

3. RELATED WORKS

[Tsuji et al. 2020] introduce a method to prioritise hazardous scenarios identified by
STAMP/STPA with the help of a statistical model checking technique. It shows
a procedure for systematically transforming the model defined by STAMP/STPA to
a formal model for a statistical model checking tool. It represents scenarios in
a formal model and calculates the probabilities by using statistical model checking.
[de Souza et al., 2020] introduce a method that combines STPA and SysML
modelling activities to provide simulation and formal verification of systems’
models. It makes it possible to develop and verify the system in a more systematic
manner, taking advantage of the integration of TTool and UPPAAL. It translates the
STPA safety requirements into properties to be verified by UPPAAL from TTool.

Two challenges are presented in this paper. The first is related to SysML
modelling and, more specifically, to the elaboration of the state machine diagrams
of the components. The second is to map the STPA safe requirements into properties
in TTool/UPPAAL. The future research of this paper is to deal with more complex
scenarios and degradation situations, and to develop automation tools. [Zhong et al.
2022] propose to build a model in SysML, describe the timing with MARTE,
transform the SysML model into a NuSMV model, and output loss scenarios
automatically with a model checker.

There are two advantages to this method. The first is that the loss scenario can
be generated automatically. The second is better collaboration with SysML-based
engineering. It also introduces three disadvantages. The first is that it is not sufficient
to express continuous behaviour. The second, it is not suitable for dealing with
extremely complex systems. The third is that a safety constraint must be converted
into temporal logic for the identification of the loss scenario. As a direction for future
research, the following are suggested. The first is to formalise time-dependent

Ryeonggu Kwon, Gihwon Kwon

10 Scientific Journal of Gdynia Maritime University, No. 125, March 2023

UCAs, and the second is to handle the automatic conversion between SysML and
NuSMV models.

[Dakwat and Villani 2018] introduce a method for combining STPA and model
checking, in order to provide a formal and unambiguous representation of the system
under analysis and the threats identified by STPA. [Abdulkhaleq, Wagner and
Leveson 2015] introduce a comprehensive safety engineering approach based on
STPA, including software testing and model checking approaches for the purpose of
developing safe software. It highlights the advantages of applying STPA to software
at the system level to identify potentially unsafe control actions of software and to
derive the corresponding safety requirements that prevent software from
transitioning into a hazardous state. Its limitations are that the main steps require
manual interventions performed by the safety analyst and the difficulty of using
formal verification in practice.

4. PROPOSED METHOD

This section describes how to apply formal verification to STPA. The focus of our
research is derivation of the hazard scenario, which is the last stage of STPA.
The following Figure 1 is an overview of the method proposed in this paper. Before
we go into detail, the assumptions of this process are:
• the safety analyst provides the results of the 3rd step of STPA;
• the system engineer identifies the minimum achievable functional requirements.

Under this assumption, the system to be verified is modelled through the model
checker. The model obtained through this process is regarded as the control
algorithm and process model of the controller in the control structure.

After that, the unsafe control actions identified through step 3 of STPA are
written as safety constraints through CTL, LTL, and TCTL. The control algorithm
and safety properties are input to the model checker, and after checking the result, if
the verification fails, a counterexample is obtained.

The counterexample refines the model so that the desired safety property can be
achieved in the model. A model that achieves all safety constraints can be obtained
by repeatedly performing the process of re-verification of the refined model.

Formal Verification of STPA with Model Checking

Scientific Journal of Gdynia Maritime University, No. 125, March 2023 11

Fig. 1. Overview of proposed method

Source: our own study.

5. CASE STUDIES

In this section, we apply the previously introduced method to two cases. The first
case is the Door Interlock System, and the second is the Auto-Hold System of an
automotive vehicle. NuSMV and UPPAAL were selected as model checkers for
creating the control algorithms, process models, and safety properties of each
system. It shows the resources acquired before proceeding with each case, and you
can check how the control algorithm and process model are modelled through each
model checker, and how the safety properties are written.

5.1. Door Interlock System

A Door Interlock System [Leveson 2011] is a system to block a specific space
through which high-voltage current flows. When a person opens a door to enter
a space exposed to high-voltage current, the high-voltage current is cut off to prevent
people from being exposed to this high-voltage current. The system consists of two
subsystems – a power controller and a power source – which can be operated by
a human operator. A human operator can request a command to open or close a door,
and the power controller must disconnect or connect the power appropriately,
as requested. And the power controller can use a sensor to determine if the door
is open or completely closed.

The hazardous system behaviours identified in the Door Interlock System are
listed in Table 1.

Ryeonggu Kwon, Gihwon Kwon

12 Scientific Journal of Gdynia Maritime University, No. 125, March 2023

Table 1. Hazardous System Behaviours for Door Interlock System

Source: [Leveson 2011].

Tables [2, 3] show the results of modelling the Door Interlock System in each
model checker. Only the core part of the model is included, not the whole model,
due to the space requirements of the paper.

Table 2. Models for Door Interlock System using NuSMV

Control
action

Not providing
causes hazard

Providing
causes hazard

Wrong timing or
order causes

hazard

Stopped too
soon or applied

too long

Power off Power not turned
off when door
opened

 Door opened,
controller waits too
long to turn off
power

Power on Power turned on
while door
opened

Power turned on
too early; door not
fully closed

Process model for Power Controller

door_pos : 0..2;
power_st : 0..1;
actions : {nothing, open_door, close_door, turn_off_power, turn_on_power, push};

door_pos A variable indicating whether a door is fully closed, ajar, or fully open

power_st A variable indicating whether power is disconnected or connected

actions A variable representing actions that can occur in the entire system

Control Algorithm for Power Controller

(i = 0 & next(actions) = push -> next(i) = 1) &
(i = 1 & door_pos = 0 & next(actions) = turn_off_power & next(power_st) = 0 -> next(i) = 2) &
(i = 2 & next(actions) = open_door -> next(i) = 3) &
(i = 3 & next(actions) = push -> next(i) = 1) &
(i = 1 & door_pos = 2 & next(actions) = close_door -> next(i) = 4) &
(i = 4 & door_pos = 0 & next(actions) = turn_on_power & next(power_st) = 1 -> next(i) = 0);

i A variable to indicate the states of FSM

Model for Human Operator

(door_pos = 0 | door_pos = 2 -> next(actions) = push);

Formal Verification of STPA with Model Checking

Scientific Journal of Gdynia Maritime University, No. 125, March 2023 13

Source: our own study.

Table 3. Models for Door Interlock System using UPPAAL

Model for Power Source

(k = 0 & next(actions) = turn_off_power -> next(k) = 0) &
(k = 0 & next(actions) = turn_on_power -> next(k) = 0) &
(k = 0 & next(actions) = open_door & next(door_pos) = 1 -> next(k) = 1) &
(k = 1 & next(door_pos) = 2 -> next(k) = 0) &
(k = 0 & next(actions) = close_door & next(door_pos) = 1 -> next(k) = 2) &
(k = 2 & next(door_pos) = 0 -> next(k) = 0);

k A variable to indicate the states of FSM

Process model for Door Interlock System

int[0, 2] door_pos = 0;
int[0, 1] power_st = 1;
chan open_door, close_door, turn_off_power, turn_on_power, push;

door_pos A variable indicating whether a door is fully closed, ajar, or fully open

power_st A variable indicating whether power is disconnected or connected

channels A variable representing actions that can occur in the entire system

Control Algorithm for Power Controller

Model for Human Operator

cont. Table 2

Ryeonggu Kwon, Gihwon Kwon

14 Scientific Journal of Gdynia Maritime University, No. 125, March 2023

Source: our own study.

Tables [4, 5] list the safety properties and shows the verification results of each
model checker.

Table 4. Safety Properties and Results using NuSMV

Source: own study.

Table 5. Safety Properties and Results using UPPAAL

Source: our own study.

Model for Power Source

SP1 CTLSPEC AG !(power_st = 1 & door_pos >= 1); true

SP2 N/A N/A

SP3 CTLSPEC AG !(actions != turn_on_power & door_pos >= 1); true

SP4 LTLSPEC (actions != turn_on_power U door_pos != 0); true

SP1 A[]!(power_st==1 && door_pos>=1) true

SP2 A[]!(x<3 && x>5 && door_pos>=1) true

SP3 A[]!(PowerController.power_on_command && door_pos>=1) true

SP4 A[]!(PowerController.power_on_command && door_pos!=0) true

cont. Table 3

Formal Verification of STPA with Model Checking

Scientific Journal of Gdynia Maritime University, No. 125, March 2023 15

5.2. Auto-Hold System

An Auto-Hold System [Placke 2014] maintains a vehicle in a stopped state by
providing appropriate pressure, even when the brake pedal is released, when the
vehicle is completely stopped by pressing the brake pedal, until the accelerator is
pressed. The components involved in this system are the driver, braking system,
propulsion system and the auto hold module, which is our main concern. The driver
can enable or disable auto hold and press or release the brake pedal. The auto hold
module performs four actions (hold, additional pressure, release, apply parking
brake) according to the driver’s operation. The braking system mainly transmits the
current brake pressure and wheel speed to the auto hold module, and the propulsion
system sends information to the auto hold module when the driver accelerates or
changes gears.

The hazardous system behaviours identified in the Door Interlock System are
listed in Table 6.

Table 6. Hazardous System Behaviours for Auto-Hold System

Control action Not providing causes
hazard Providing causes hazard

Wrong
timing

or order
causes
hazard

Stopped too
soon or

applied too
long

HOLD Not providing HOLD
is hazardous if AH is active
and the vehicle comes to
rest with the brake pedal on

Providing HOLD is
hazardous if the driver
is applying the accelerator

 Providing
HOLD is
hazardous if
the driver has
inactivated
AH

 Providing HOLD is
hazardous if AH is
DISABLED

 Providing
HOLD is
hazardous if
there is
sufficient
wheel torque

 Providing HOLD is
hazardous if AH is
ENABLED and the vehicle
is not at rest

 Providing
HOLD is
hazardous if
the required
time at rest
has not been
met

ADDITIONAL_PRESSURE Not providing
ADDITIONAL_PRESSURE
is hazardous if AH is in
HOLD-MODE and the
vehicle is slipping

Providing
ADDITIONAL_PRESSURE
is hazardous if AH is not in
HOLD-MODE

 Providing
ADDITIONAL_PRESSURE

Ryeonggu Kwon, Gihwon Kwon

16 Scientific Journal of Gdynia Maritime University, No. 125, March 2023

Source: [Placke 2014].

Table [7, 8] shows the results of modelling the Auto-Hold System in each model
checker. Only the core part of the model is included, not the whole model, due to the
space requirements of the paper.

Table 7. Models for Auto-Hold System using NuSMV

is hazardous if it exceeds the
brake system specs

RELEASE Not providing RELEASE
is hazardous if the driver has
commanded sufficient wheel
torque via the accelerator
pedal

Providing RELEASE is
hazardous if AH is in HOLD-
MODE and the driver has not
commanded sufficient wheel
torque

 Providing
RELEASE
before the
there is
sufficient
wheel torque
is hazardous

Not providing RELEASE
is hazardous if the driver
DISABLES AH

APPLY EPB It is hazardous not to provide
APPLY EPB if the driver has
released AH w/o sufficient
wheel torque or brake pedal
pressure

It is hazardous for AH to
provide APPLY EPB if AH is
not in HOLDMODE

Process model for Auto Hold Module

mode : 0..2;
brake : 0..1;
gear : 0..4;
accel_pedal_level : 0..9;
brake_pressure_level : 0..9;
wheel_speed_level : 0..9;
actions : {nothing, enable_ah, disable_ah, accelerate, brake_pedal_on, brake_pedal_off, shift,
ah_enabled, ah_disabled, hold, additional_pressure, release, brake_pedal_feel, brake_pressure,
wheel_speed, accel_pedal_perc, PRNDL};

Mode A variable indicating that the feature is in Disable, Enable, or Hold mode.

Brake A variable indicating whether the brake pedal was pressed.

gear A variable that represents the current car gear.

accel_pedal_level A variable that indicates how much the accelerator pedal is pressed.

brake_pressure_level A variable that indicates the level of brake pressure.

cont. Table 6

Formal Verification of STPA with Model Checking

Scientific Journal of Gdynia Maritime University, No. 125, March 2023 17

wheel_speed_level A variable indicating the level of rotation of the wheel.

actions A variable representing actions that can occur in the entire system

Control Algorithm for Auto Hold Module

(j = 0 & actions = enable_ah -> next(mode) = 1 & next(j) = 1) &
(j = 1 & actions = disable_ah -> next(mode) = 0 & next(j) = 0) &
(j = 2 & actions = PRNDL -> (next(gear) = 0 | next(gear) = 1 | next(gear) = 2 | next(gear) = 3 |
next(gear) = 4) & next(j) = 0) &
(j = 3 -> next(j) = 0) &
(j = 4 & actions = accel_pedal_perc -> (next(accel_pedal_level) = 0 | next(accel_pedal_level) = 1 |
next(accel_pedal_level) = 2 | next(accel_pedal_level) = 3 | next(accel_pedal_level) = 4 |
next(accel_pedal_level) = 5 | next(accel_pedal_level) = 6 | next(accel_pedal_level) = 7 |
next(accel_pedal_level) = 8 | next(accel_pedal_level) = 9) & next(j) = 0) &
(j = 5 & actions = brake_pedal_on -> next(brake) = 1 & next(accel_pedal_level) = 0 & next(j) = 7) &
(j = 6 -> next(j) = 1) &
(j = 7 -> next(actions) = hold & next(mode) = 2 & next(j) = 8) &
(j = 8 & actions = brake_pressure -> (next(brake_pressure_level) = 0 | next(brake_pressure_level) = 1
| next(brake_pressure_level) = 2 | next(brake_pressure_level) = 3 | next(brake_pressure_level) = 4 |
next(brake_pressure_level) = 5 | next(brake_pressure_level) = 6 | next(brake_pressure_level) = 7 |
next(brake_pressure_level) = 8 | next(brake_pressure_level) = 9) & next(j) = 9) &
(j = 9 & actions = wheel_speed -> (next(wheel_speed_level) = 0 | next(wheel_speed_level) = 1 |
next(wheel_speed_level) = 2 | next(wheel_speed_level) = 3 | next(wheel_speed_level) = 4 |
next(wheel_speed_level) = 5 | next(wheel_speed_level) = 6 | next(wheel_speed_level) = 7 |
next(wheel_speed_level) = 8 | next(wheel_speed_level) = 9) & next(j) = 10) &
(j = 10 & wheel_speed_level >= 1 -> next(actions) = additional_pressure &
(next(brake_pressure_level) = 0 | next(brake_pressure_level) = 1 | next(brake_pressure_level) = 2 |
next(brake_pressure_level) = 3 | next(brake_pressure_level) = 4 | next(brake_pressure_level) = 5 |
next(brake_pressure_level) = 6 | next(brake_pressure_level) = 7 | next(brake_pressure_level) = 8 |
next(brake_pressure_level) = 9) & (next(wheel_speed_level) = 0 | next(wheel_speed_level) = 1 |
next(wheel_speed_level) = 2 | next(wheel_speed_level) = 3 | next(wheel_speed_level) = 4 |
next(wheel_speed_level) = 5 | next(wheel_speed_level) = 6 | next(wheel_speed_level) = 7 |
next(wheel_speed_level) = 8 | next(wheel_speed_level) = 9) & next(actions) = additional_pressure &
next(j) = 10) &
(j = 11 & actions = accelerate -> next(mode) = 1 & next(j) = 12) &
(j = 12 & actions = accel_pedal_perc -> (next(accel_pedal_level) = 0 | next(accel_pedal_level) = 1 |
next(accel_pedal_level) = 2 | next(accel_pedal_level) = 3 | next(accel_pedal_level) = 4 |
next(accel_pedal_level) = 5 | next(accel_pedal_level) = 6 | next(accel_pedal_level) = 7 |
next(accel_pedal_level) = 8 | next(accel_pedal_level) = 9) & next(j) = 13) &
(j = 13 & actions = accelerate -> next(j) = 12) &
(j = 14 & actions = brake_pedal_on -> next(brake) = 1 & next(accel_pedal_level) = 0 & next(j) = 7);

j A variable to indicate the states of FSM

Model for Human Driver

(i = 0 -> next(actions) = brake_pedal_on & next(i) = 1) &
(i = 1 & actions = brake_pedal_feel -> next(i) = 0) &
(i = 0 -> next(actions) = enable_ah & next(i) = 2) &

cont. Table 7

Ryeonggu Kwon, Gihwon Kwon

18 Scientific Journal of Gdynia Maritime University, No. 125, March 2023

Source: our own study.

Table 8. Models for Auto-Hold System using UPPAAL

(i = 2 -> next(i) = 0) &
(i = 0 -> next(actions) = brake_pedal_off & next(i) = 3) &
(i = 3 -> next(i) = 0) &
(i = 0 -> next(actions) = disable_ah & next(i) = 4) &
(i = 4 -> next(i) = 0) &
(i = 0 -> next(actions) = accelerate & next(i) = 5) &
(i = 5 -> next(i) = 0) &
(i = 0 -> next(actions) = shift & next(i) = 6) &
(i = 6 & actions = PRNDL -> next(i) = 0);

i A variable to indicate the states of FSM

Model for Braking System

(k = 0 & actions = brake_pedal_on -> next(k) = 1) &
(k = 1 -> next(actions) = brake_pedal_feel & next(k) = 0) &
(k = 0 & actions = brake_pedal_off -> next(k) = 2) &
(k = 2 -> next(k) = 0) &
(k = 0 & actions = hold -> next(k) = 3) &
(k = 3 -> next(actions) = brake_pressure & next(k) = 4) &
(k = 4 -> next(actions) = wheel_speed & next(k) = 0) &
(k = 0 & actions = additional_pressure -> next(k) = 5) &
(k = 5 -> next(k) = 0);

k A variable to indicate the states of FSM

Model for Propulsion System

(l = 0 & actions = accelerate -> next(l) = 1) &
(l = 1 -> next(actions) = accel_pedal_perc & next(l) = 0) &
(l = 0 & actions = shift -> next(l) = 2) &
(l = 2 -> next(actions) = PRNDL & next(l) = 0);

l A variable to indicate the states of FSM

Process model for Auto Hold Module

int[0, 2] mode = 0;
int[0, 1] brake = 0;
int[0, 4] gear = 0;
int[0, 9] brake_pressure_level = 0;
int[0, 9] wheel_speed_level = 0;
int[0, 9] accel_pedal_level = 0;
chan enable_ah, disable_ah;
broadcast chan accelerate, brake_pedal_on, brake_pedal_off, shift;

cont. Table 7

Formal Verification of STPA with Model Checking

Scientific Journal of Gdynia Maritime University, No. 125, March 2023 19

chan ah_enabled, ah_disabled, hold, additional_pressure, release;
chan brake_pedal_feel, brake_pressure, wheel_speed;
broadcast chan accel_pedal_perc, PRNDL;

mode A variable indicating that the feature is in Disable, Enable, or Hold mode.

brake A variable indicating whether the brake pedal was pressed.

gear A variable that represents the current car gear.

brake_pressure_level A variable that indicates how much the accelerator pedal is pressed.

wheel_speed_level A variable that indicates the level of brake pressure.

accel_pedal_level A variable indicating the level of rotation of the wheel.

channels A variable representing actions that can occur in the entire system

Control Algorithm for Auto Hold Module

cont. Table 8

Ryeonggu Kwon, Gihwon Kwon

20 Scientific Journal of Gdynia Maritime University, No. 125, March 2023

Source: our own study.

Tables [9, 10] list the safety properties and show the verification results of each
model checker.

Model for Driver

Model for Braking System

Model for Propulsion System

cont. Table 8

Formal Verification of STPA with Model Checking

Scientific Journal of Gdynia Maritime University, No. 125, March 2023 21

Table 9. Safety Properties and Results using NuSMV

Source: our own study.

Table 10. Safety Properties and Results using UPPAAL

SP1 LTLSPEC (ahm.mode = 1 & ahm.brake = 1 -> ahm.j = 8); true

SP2 CTLSPEC AG !(ahm.j = 8 & ps.l = 1); true

SP3 CTLSPEC AG !(ahm.j = 8 & ahm.mode = 0); true

SP4 CTLSPEC AG !(ahm.j = 8 & ahm.mode = 1 & ahm.brake != 1); true

SP5 CTLSPEC AG !(ahm.j = 8 & dr.i = 4); true

SP6 CTLSPEC AG !(ahm.mode = 2 & ahm.accel_pedal_level >= 1); true

SP7 N/A N/A

SP8 CTLSPEC AG !(ahm.j = 10 & ahm.mode = 2 &
ahm.wheel_speed_level >= 1);

true

SP9 CTLSPEC AG !(ahm.j = 10 & ahm.mode != 2); true

SP10 N/A N/A

SP11 LTLSPEC (ahm.j = 14 -> ahm.accel_pedal_level >= 1); true

SP12 LTLSPEC (ahm.j = 14 -> ahm.mode = 0); true

SP13 CTLSPEC AG !(ahm.j = 14 & ahm.mode = 2 & ahm.accel_pedal_level
= 0);

true

SP14 CTLSPEC AG !(ahm.j = 14 & ahm.accel_pedal_level = 0); true

SP15 N/A N/A

SP16 N/A N/A

SP1 AutoHoldModule.mode == 1 && AutoHoldModule.brake == 1 -->
AutoHoldModule.Hold

true

SP2 A[]!(AutoHoldModule.Hold && PropulsionSystem.Accelerate) true

SP3 A[]!(AutoHoldModule.Hold && AutoHoldModule.mode == 0) true

SP4 A[]!(AutoHoldModule.Hold && AutoHoldModule.mode == 1 &&
AutoHoldModule.brake != 1)

true

SP5 A[]!(AutoHoldModule.Hold && Driver.DisableAH) true

Ryeonggu Kwon, Gihwon Kwon

22 Scientific Journal of Gdynia Maritime University, No. 125, March 2023

Source: our own study.

6. DISCUSSIONS

We discuss two case studies and empirical results using two model checkers. There
are a total of 4 safety constraint conditions for the Door Interlock System. Among
them, 3 safety properties except SP3 could be written with NuSMV, and all 4 could
be written with UPPAAL. The reason NuSMV could not write SP3 of the Door
Interlock System is because it does not provide a clock concept systematically. For
the same property, UPPAAL systemically supports the clock concept and uses TCTL
as the property specification language, so the time constraint could be sufficiently
expressed. There is one other thing that stands out. Since NuSMV provides almost
completely the syntax and semantics of CTL or LTL as a modelling and property
specification language, in the case of SP4, it was possible to write safety constraints
as safe properties sufficiently using the Until operator. However, in UPPAAL, it was
difficult to express the same property because the property specification language is
syntactically limited and does not support such things as the Until operator.

SP6 A[]!(AutoHoldModule.mode == 2 &&
AutoHoldModule.accel_pedal_level >= 1)

true

SP7 A[]!(AutoHoldModule.Hold && x > 5 && x < 3) N/A

SP8 A[]!(!AutoHoldModule.AdditionalPressure && AutoHoldModule.mode
== 2 && AutoHoldModule.wheel_speed_level >= 1)

true

SP9 A[]!(AutoHoldModule.AdditionalPressure && AutoHoldModule.mode
!=2)

true

SP10 N/A N/A

SP11 AutoHoldModule.Release --> AutoHoldModule.accel_pedal_level >= 1 true

SP12 AutoHoldModule.Release --> AutoHoldModule.mode == 0 true

SP13 A[]!(AutoHoldModule.Release && AutoHoldModule.mode == 2 &&
AutoHoldModule.accel_pedal_level == 0)

true

SP14 A[]!(AutoHoldModule.Release && AutoHoldModule.accel_pedal_level
== 0)

true

SP15 N/A N/A

SP16 N/A N/A

cont. Table 10

Formal Verification of STPA with Model Checking

Scientific Journal of Gdynia Maritime University, No. 125, March 2023 23

In the other case study, the Auto-Hold System, out of a total of 16 safety
constraints, 12 safety properties were created with NuSMV, and 13 safety properties
could be created with UPPAAL. SP15 and SP16 were excluded because they were
not suitable for modelling the control algorithm as an off-nominal situation, and
SP10 could not be written because we were unable to access the specification of the
system. Since SP7 included time constraints, modeling and formalising were
possible only with UPPAAL.

As introduced in the previous section, NuSMV and UPPAAL are commonly
used in much of the literature. To the best of our knowledge, however, there have
been no attempts to use these two tools at the same time. We obtained the following
results by using these two tools to model the same system.
1) The specification language of NuSMV can express the specification abundantly,

both syntactically and semantically, so it was very easy to write safety constraints
expressed in natural language in logical formula.

2) Since UPPAAL systematically supports clocks, it is very suitable for modelling
systems with time constraints.

We used the model checking technique in STPA to discover and derive risk
scenarios. As a guide that is generally provided, people directly analyse by
constructing a context table with all possible values that the process model can have
for control actions. The context table is similar to examining all the states of the
system, but by having the model checker take over this task, it can be automatic and
less error-prone without human intervention. And if you discover a counterexample
through the model checker, you can analyse the trace and help refine the control
algorithm of the controller.

In summary, the advantages of using the model checking technique are as
follows.
1) Since the model checker verifies whether the safety property is violated through

a full investigation, it is possible to reduce the human intervention and reduce the
occurrence of mistakes.

2) Even if an actual implemented system does not exist, safety properties can be
verified more quickly in the early stages of development or modelling, so a guide
can be provided to system engineers to follow safety constraints afterwards.

7. CONCLUSIONS

In this paper, we introduced research on applying model checking, which is one of
the formal verification techniques, to STPA. For this, the model checkers chosen
were NuSMV and UPPAAL. In two case studies, the control algorithm and process
model of the system were modelled using each model checker, and the identified
UCAs were written as safety properties. In the early stage of modelling each system,
a control algorithm that achieves all safety properties was obtained through the

Ryeonggu Kwon, Gihwon Kwon

24 Scientific Journal of Gdynia Maritime University, No. 125, March 2023

counterexample of the model checker. As a future study, we will conduct research
to integrate the model checking technique into the STPA-compliant software
development process. So, we will quantitatively analyse how much the model
checking technique can help STPA. And it will be necessary to select and apply
a larger and more complex system than the system discussed in this paper.

8. ACKNOWLEDGEMENTS

This work was supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by the Korean government
(MSIT) (No. 2021-0-00122, Safety Analysis and Verification Tool Technology
Development for High Safety Software Development).

REFERENCES

Abdulkhaleq, A., Wagner, S., Leveson, N., 2015, A Comprehensive Safety Engineering Approach for
Software-Intensive Systems Based on STPA, Procedia Engineering, vol. 128, pp. 2–11.

Baier, C., Katoen, J.-P., Larsen, K.G., 2014, Principles of Model Checking, MIT Press, Cambridge.
Dakwat, A.L., Villani, E., 2018, System Safety Assessment Based on STPA and Model Checking, Safety

Science, vol. 109, pp. 130–143.
De Souza, F.G., de Melo Bezerra, J., Hirata, C.M., de Saqui-Sannes, P., Apvrille, L., 2020, Combining

STPA with SysML Modeling, 2020 IEEE International Systems Conference (SysCon).
Placke, M.S., 2014a, Application of STPA to the Integration of Multiple Control Systems: A Case Study

and New Approach.
Tsuji, M., Takai, T., Kakimoto, K., Ishihama, N., Katahira, M., Iida, H., 2020, Prioritizing Scenarios

Based on Stamp/STPA Using Statistical Model Checking, 2020 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW).

Zhong, D., Sun, R., Gong, H., Wang, T., 2022, System-Theoretic Process Analysis Based on
SysML/Marte and NuSMV, Applied Sciences, vol. 12(3).

Internet sources
Leveson, N.G., Thomas, J.P., 2018, STPA Handbook, http://psas.scripts.mit.edu/home/get_file.php?

name=STPA_handbook.pdf (accessed 23.08.2022).
Placke, M.S., 2014b, Engineering a Safer World, http://sunnyday.mit.edu/safer-world.pdf (accessed

23.08.2022).

