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Streszczenie: Jednym z najlepszych sposobów modelowania sieci transportowej jest użycie 

grafu z wierzchołkami i krawędziami. Reprezentują one odpowiednio węzły i łuki takiej sieci. 
Teoria grafów daje możliwość użycia dziesiątek parametrów lub charakterystyk, w tym 
spójności, drzew spinających lub różnych typów liczb dominowania i związanych z tym 
problemów. Głównym celem artykułu jest przedstawienie metod i algorytmów teorii grafów 
pomocnych w modelowaniu i optymalizacji sieci transportowej. Po pierwsze, wprowadzono 
opisy podstawowych pojęć w teorii grafów. Następnie zaprezentowano koncepcje domino-
wania, liczby zniewolenia czy podziału krawędzi grafu oraz ich implementacji do opisu  
i modelowania sieci transportowej. Ponadto przedstawiono algorytmy do wyszukiwania 
drzewa opinającego i maksymalnego przepływu w sieciach. Wreszcie pokazano możliwe 
sposoby wykorzystania wyróżnionych koncepcji do przykładu sieci transportowej. Na zakoń-
czenia przedstawiono wnioski i przyszłe kierunki prac. 

Słowa kluczowe: problem plecakowy, liczba dominowania, liczba zniewolenia spójnego, 

MST, maksymalny przepływ, sieć transportowa, wrażliwość sieci. 

Abstract: One of the best ways of modelling a transport network is to use a graph with 

vertices and edges. They represent nodes and arcs of such network respectively. Graph 
theory gives dozens of parameters or characteristics, including a connectivity, spanning 
trees or the different types of domination number and problems related to it. The main aim of 
the paper is to show graph theory methods and algorithms helpful in modelling and 
optimization of a transportation network. Firstly, the descriptions of basic notations in graph 
theory are introduced. Next, the concepts of domination, bondage number, edge-subdivision 
and their implementations to the transportation network description and modeling are 
proposed. Moreover, the algorithms for finding spanning tree or maximal flow in networks 
are presented. Finally, the possible usage of distinguishing concepts to exemplary 
transportation network is shown. The conclusions and future directions of work are 
presented at the end of the paper. 

Keywords: knapsack problem, domination number, bondage-connected number, MST, 

maximal flow, transportation network, vulnerability. 
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1. INTRODUCTION 

The main problem in transportation network analysis is proper description and 

selection of the right tool. Natural way to describe a structure of transportation 

network is the graph theory. According to definition of graph, there is a set of 

vertices and edges. In case of description of transportation networks, the nodes and 

arcs (links) are used respectively. In this way of thinking, the graph is a simplified 

mathematical model of the physical network.  Many solutions of the real problems 

in transport networks have been reduced to finding the right parameters in the 

corresponding graph. The well-known problems solving according to graph theory 

are Traveling Salesman Problem (TSP) [Harrary 1969; Leeuwen 1986; Cascetta 

2001; Cormen et al. 2009] with later modification [Neumann 2016], Chineese 

Postman Problem [Harrary 1969; Leeuwen 1986], maximal flow in network 

[Newell 1980; Leeuwen 1986], knapsack problem [Martello and Toth 1990; 

Cormen et al. 2009]. Due to technological developments, it is necessary to continue 

to explore the possibility of writing complex technical problems in networks using 

the simplest but also the most faithful mathematical graph theory models.  

The basic task of the transport network is to enable you to reach from point A 

to point B. Because of this, it is reasonable to search for a way to describe the 

transport network using the theory of reliability and safety [Kołowrocki and 

Soszyńska-Budny 2011; 2013] also with regard to its operation processes 

[Kołowrocki and Soszyńska-Budny 2011].  

Sometimes, the solution is well-known, but it is not enough. Thus, the 

important part of research on transportation networks is optimization. Earlier, the 

one criterion of optimization gave full solution. There should be mentioned here 

algorithms for: TSP [Cascetta et al. 2001; Cormen et al. 2009; Neumann 2016], 

maximal flow in network [Newell 1980; Leeuwen 1986], minimum spanning tree 

[Leeuwen 1986; Cormen et al. 2009; Guze 2014b]. But now the multi-criteria is 

much more important. There are some algorithms in graph theory, which serve as 

multi-criteria optimization tools. There should be mentioned here algorithms for  

0-1 knapsack problem [Zitzler and Thiele 1999; Guze 2014a; 2015] or minimal 

cost of maximal flow in network [Newell 1980; Leeuwen 1986; Cormen et al. 

2009; Guze 2014b]. 

The domination theory in graphs [Harrary 1969; Haynes, Hedetniemi and 

Slater 1998] and related concepts as bondage number or sub-division number [Fink 

et al. 1990; Hartnell and Rall 1994] can also be used to analyze and optimize the 

transportation network. The proposition of the usage mentioned conceptsare 

presented in [Guze 2014b; 2015; 2017]. 

The main aim of this paper is to review and to show usefulness of the models 

based on graph theory in network analysis and optimization. 
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2. GRAPH THEORY BASIC NOTATIONS 

We consider the connected, simple, undirected graph G = (V,E), where V  is the set 

of vertices (nodes) and  E is the set of edges (arcs). Sometimes, we use the fuller 

notation for graph G, where V(G) and E(G) denote respectively its vertex-set and 

the edge-set.  The assumption about connectivity is very important, because it is 

the fundamental to functioning of transport or logistics networks. 

Some basic definitions of graph theory are necessary to understand ways of 

description of networks graphs. The set of all adjacent vertices to vertex Vv in G 

is called neighborhood and denoted by )(vN
G

or ).(vN The close neighborhood  

of this vertex is defined as }{)( vvN
G

  and denoted by ].[vNG The other basic 

parameter for graphs is degree of vertex ,Vv what is defined as the number  

of vertices in )(vN
G

and denoted by ).deg(v The minimum and maximum  

degree are defined as )}deg(:min{)( xVxG  and )},deg(:max{)( xVxGΔ   

respectively. Moreover, the set of all edges, incident to the vertex Vv is denoted 

by ).(vIG For any set ,VA neighborhood is given by .)()(  Av
vNAN


 The 

induced subgraph defined on A is denoted by ][AG .  

Regarding the assumption about connectivity in graphs, it is said that two 

vertices u and v in graph G are called connected if G contains a path from u to v. 

Otherwise, they are called disconnected. A graphis said to be connected if every 

pair of vertices in the graph is connected. If graph is disconnected, there are  

a connected component, which are maximal connected subgraphs of G. Each 

vertex belongs to exactly one connected component, as does each edge.  

3. REVIEW OF METHODS FOR ANALYSIS OF TRANSPORTATION 
NETWORKS 

3.1. Domination and related topics in graphs 

The domination theory has various application, where the analysis of 

communications network is the one of most discussed in literature. Thus, the idea 

is to transfer selected methods to the transportation network research field.  

One of these methods, more precisely, the parameter is the dominating set and 

domination number. According to results given in [Haynes 1988] a set )(GVD  

is a dominating set of graph G if for any Vv  either Dv or DvN
G
)( . 

While the minimum cardinality of a dominating set of graph G is called domination 

number of G and denoted as )(G .  

The example of dominating set is presented in Fig. 2. 



 
Sambor Guze  

 

28  Scientific Journal of Gdynia Maritime University, No. 107, December 2018 

 

Fink et al. have examined a question concerning the vulnerability of the 

communications network under link failure. They supposed situation, where 

someone does not know which nodes in the network act as transmitters but does 

know that the set of such nodes can build a minimum dominating set in the related 

graph. Thus, they asked about the fewest number of communication links that he 

must sever so that at least one additional transmitter would be required in order that 

communication with all sites be possible. In this way, they introduced the new 

parameter called the bondage number of a graph. It is defined in following way. 

The bondage number )(Gb  of nonempty graph G is the minimum cardinality 

among all sets of edges E for which )()( GEG   [Fink et al. 1990; Hartnell 

and Rall 1994]. Thus, the bondage number of graph G describes the smallest 

number of edges whose removal from G results in a graph with domination number 

larger than that of G (see Fig. 3 or Fig. 4).  

Because the definition of bondage network is not enough for transportation 

network analysis, in [Guze 2017] author defined the bondage-connected number 

)(Gbc  of nonempty graph Gas the minimum cardinality among all sets of edges E 

for which )()( GEG    and graph EG   is connected. 

The above definitions refer to the general concept of undirected graphs. There 

are topics related to weight functions, what allows defined the vertex-weighted and 

edge-weighted graphs [Harrary 1969; Haynes, Hedetniemi and Slater 1988; Guze 

2014b].  

Generally, a vertex-weighted graph ),(
v
wG  is defined as a graph G  together 

with a positive weight-function on its vertex set :
v
w .0)( RGV Similarly, an 

edge-weighted graph ),(
e
wG  is defined as a graph G  together with a positive 

weight-function on its edge set :
e
w .0)( RGE  

These definitions are needed to define different types of weighted dominiation 

numbers in an undirected graph. Two of them are as follows: 

 the weighted domination number )(Gw  of ),(
v
wG  is the minimum weight 

 


Dv
vwDw )()( of a set )(GVD   such that every vertex DDVx  )(  

has a neighbor in D ; 

 the weighted independent domination number )(G
Iw

  of ),(
v
wG  is the 

minimum weight  


IDv
I

vwDw )()( of a set )(GVD
I
  such that if no two 

vertices of I
D  are connected by any edge of ),( wG . 

Similarly, it can be done for directed graphs. 

Taking into account the complexity of the minimum dominating set, we 

should state, that in general is NP-hard problem. Efficient approximation 

algorithms do exist under assumption that any dominating set problem can be 
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formulated as a set covering problem. Thus, the greedy algorithm for finding 

domination set is an analog of one that has been presented in [Parekh 1991; Guze 

2014]. This algorithm is formulated as follows [Parekh 1991; Guze 2014]: 

Algorithm 1: 

1. Let V {1,...,n}, and define D  . 

2. Greedy add a new node to D  in each iteration, until D  forms a dominating set. 

3. A node j , is said to be covered if j D  or if any neighbor of j  is in D. A node 

that is not covered is said to be uncovered. 

4. In each iteration, put into D  the least indexed node that covers the maximum 

number of uncovered nodes. 

5. Stop when all the nodes are covered. 

In case of the minimum connected domination set, the greedy algorithm is also 

used. However, to define them some preliminaries are necessary [Guze 2014b]. 

3.2. Spanning tree 

The main role of the transportation networks is to guarantee reliable transfer 

form point A to point B. Thus, the connectivity of the network is the most 

important thing. As the appropriate tool for the transportation network analysis in 

terms of its links between each node is finding the spanning tree of this network.  

It can be done for both undirected and directed cases or for simple or edge-

weigthed graphs.  

Generally, the spanning tree T of a connected, undirected graph G is a tree 

composed of all the vertices and some (or perhaps all) of the edges of G. In other 

words, a spanning tree of G is a selection of edges of G that form a tree spanning 

every vertex. It means, that every vertex lies in the tree, but no cycles (or loops) are 

formed according to tree definition [Guze 2014b]. 

4. REVIEW OF METHODS FOR OPTIMIZING TRANSPORTATION 
NETWORKS 

4.1.  Minimal spanning tree 

The first optimization problem disscussed in this section is minimum spanning tree. 

It can be done for the edge-weighted graphs. For this type of graphs, a minimum 

spanning tree (MST) is a spanning tree whose weight (the sum of the weights of its 

edges) is no greater than the weight of any other spanning tree. 
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The solution of this problem can be done according to two well-known 

algorithms: Kruskal’s and Prim’s. They can be shown as follows [Cormen et al. 

2009; Guze 2014]: 

Algortihm 2 (Kruskal’s) 

1. Find the cheapest edge in the graph (if there is more than one, pick one at 

random). Mark it with any given colour, say red. 

2. Find the cheapest unmarked (uncoloured) edge in the graph that does not close  

a coloured or red circuit. Mark this edge red. 

3. Repeat Step 2 until you reach out to every vertex of the graph (or you have n-1 

coloured edges).  

The red edges form the desired minimum spanning tree. 

Algortihm 3 (Prim’s) 

1. Pick any vertex as a starting vertex - .vstart  Mark it with any given colour (red). 

2. Find the nearest neighbor of start
v  (call it P1). Mark both P1 and the edge start

v P1 

red. Cheapest unmarked (uncoloured) edge in the graph that does not close  

a coloured circuit. Mark this edge with same colour of Step 2. 

3. Find the nearest uncoloured neighbor to the red subgraph (i.e., the closest vertex 

to any red vertex). Mark it and the edge connecting the vertex to the red 

subgraph in red. 

4. Repeat Step 3 until all vertices are marked red.  

The red subgraph is a minimum spanning tree. 

4.2. The knapsack problem 

Second optimization problem mentioned in this paper is one of the most known 

problem in graph theory - the knapsack problem. First studies in this problem 

started in 1897. It is combinatorial optimization problem. General description is 

based on given a set of items, each with a mass and a value [Martello and Toth 

1990; Guze 2014a]. There is determined the number of each item to include in  

a collection so that the total weight is less than or equal to a given limit and the 

total value is as large as possible (according to (1)). One of the most applicable 

modification of the knapsack problem is the 0-1 knapsack problem. In this way is 

formulated as multi-objective optimization problem [Guze 2014a]. 

General assumption about a 0-1 knapsack problem is it consists of a set of 

items, weight and profit associated with each item, and an upper bound for the 

capacity of the knapsack. We want to find a subset of items which maximizes the 

profits and all selected items fit into the knapsack, i.e., the total weight does not 

exceed the given capacity [Zitzler and Thiele 1999; Guze 2014a; 2015]. 
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After assuming an arbitrary number of knapsacks, the single-objective 

problem is extended directly to the multi-objective case. Formally, the multi-

objective 0-1 knapsack problem can be defined in the following way [Zitzler and 

Thiele 1999; Guze 2015]: 

Given a set of m  items and a set of n  knapsacks, with 


ji

p
, profit of item j  according to knapsack i , 


ji

w
, weight of item j  according to knapsack i , 


i
c capacity of knapsack i , 

find a vector     ,1,0,,,
21

m

m
xxx  x  such that

m

i,j j i
j 1

i {1,2,...,n} :  w x c


      

and for which  )(,),(),()(
21

xxxx
n
ffff   is maximum, where 

m

i i,j j
j 1

f ( ) p x


 x  

and 1
j
x  if and only if when item j  is chosen. 

Nowadays, the best solutions of knapsack problem are described in terms of  

a genetic methods. As it is shown exemplary in [Zitzer and Thiele 1999; Guze 

2015] it can be very useful tool for multi-objective optimization of transportation 

networks and complex systems, particulary in their safety and reliability aspects 

[Guze 2015]. 

 4.3. Flows in networks 

The graph theory is the basis for analyzing a traffic flow in transportation systems 

and networks [Newell 1980; Leeuwen 1986]. In Section 2 the definition of 

undirected graph was introduced. But, for more detailed analysis of traffic flows, 

the digraphs should be defined. Thus, the graph ),( AVGd   is directed graph or 

digraph with a set V, whose elements are called vertices or nodes and set A of 

ordered pairs of vertices, called arcs, directed edges, or arrows. 

The following definitions are important [Newell 1980]: 

 let ),,,( tsAVGst  be a network with Ats , being the source and the sink of 

stG  respectively;  

 the capacity of an edge of network stG  is mapping ,:  RAc  which 

represents the maximum amount of flow that can pass through an edge. It is 

denoted as ,uvc where ;Av,u   

 a flow in network stG is mapping ,:  RAfuv  where ,, Avu  which subjects 

to the following two constraints: 



 
Sambor Guze  

 

32  Scientific Journal of Gdynia Maritime University, No. 107, December 2018 

 

1 ,
),(

uvuv
Avu

cf 


 (capacity constraint: the flow of an edge cannot exceed its 

capacity), 

2  


Avuu vuAvuu uv
tsVv

ff
),(:),(:},{\

, (conservation of flows: the sum of the 

flows entering a node must equal the sum of the flows exiting a node, except 

for the source and the sink nodes). 

 

The value of flow ,
),(: 


Avsv svuv ff  where s  is the source of stG . 

Generally, the main problem in traffic flows is maximize value of 
uvf , which 

is called maximum flow problem. One of the solutions is using residual network 

Gst. The definition of this type of network, according to [Newell 1980], for given 

Gst and flow fuv, is as follows: 

1. The node set of 
f

stG  is the same as that of stG ; 

2. Each edge ),( vue   of 
f

stG  is with capacity ee fc  ; 

3. Each edge ),( uve   of 
f

stG  is with capacity .ef  

Furthermore }),(:min{ pvucc f

uv

f

p  is residual capacity of path p in network 

.G f
st  

According to above definitions, the algorithm of finding the maximal flow in 

network is given as follows [Newell 1980; Leeuwen 1986; Cormen et al. 2009]. 

Algorithm 4 (Ford-Fulkerson) 

1. for each edge ),( vue  do 

2. begin 

3. uvf = 0 and vuf = 0; 

4. end 

5. while exists path p  from s  do t  in 
f

stG  do 

6. begin 

7. }),(:min{ pvucc f

uv

f

p  ; 

8. for each pvue  ),(  do 

9. begin 

10.   uvf = uvf +
f

pc  and vuf =- uvf ; 

11. end 

12.  end 

13.  return f. 
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The extension of this problem is minimal cost maximal flow problem, where 

addtionally each arc ),( vue   has a cost  kuv. The cost sending a flow 
uvf by the 

edge ( , )u v is equal to 
uv uvk f . The total cost of a flow over all edges is given by

( , ) uv uvu v E
k f


 ,with some constraints: 

 ,
),(

uvuv
Avu

cf 


 (capacity constraint: the flow of an edge cannot exceed its 

capacity);  

  


Avuu vuAvuu uv
tsVv

ff
),(:),(:},{\

, (conservation of flows: the sum of the 

flows entering a node must equal the sum of the flows exiting a node, except for 

the source and the sink nodes); 

 Skew symmetry: 
uv vuf f  , 

 Requiered flow: sww V
f d


 and wtw V

f d


 , where s is the sink and t is the 

source. 

There is many algorithms for minimal cost maximum flow problem. The base 

is the mixture of the Bellamnn-Ford algorithm, which helps in detecting of 

negative cycles in cost network, and the Ford-Fulkerson for maximal flow in  

a network (see Algorithm 5, source [http:www./hackerearth.com/practice…. 2018]). 

Algorithm 5 (Cycle Cancelling Algorithm) 

function: CostNetwork(Graph G, Graph Gf): 

Gcis empty graph 

fori in edges E(G): 

if E(u,v) in G: 

cf(u,v) = c(u,v) 

else if E(u,v) in Gf: 

cf(u,v) = -c(u,v) 

function: MinCost(Graph G): 

Find a feasible maximum flow of G using Ford Fulkerson and construct residual  

graph(Gf) 

Gc = CostNetwork(G, Gf) 

while(negativeCycle(Gc)): 

Increase the flow along each edge in cycle C by minimum capacity in the 

cycle C 

Update residual graph(Gf) 

Gc = CostNetwork(G,Gf) 

mincost = sum of Cij*Fij for each of the flow in residual graph 

return mincost 
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In this solution, the main problem is detecting and reflecting the negative 

cycle. In cost network it is a cycle where sum of costs of all the edges in the cycle 

is negative number. These cycles can be detected using Bellman Ford algorithm. 

They should be eliminated because flow through such cycles cannot be allowed.  

5. EXAMPLE OF APPLICATION IN TRANSPORTATION NETWORKS 

The main aim of this section is to present the possible application of selected graph 
theory topics presented in Sections 3 and 4. The urban area of city can be divided 
into communication regions, what helps in analysis and management of traffic 
flow. The number of these regions depends on detail of provided analyses.  

In our example, let us consider, the exemplary small urban transportation 
network with eight communication regions, what is represented by graph G given  
in Fig. 1. This is the network’s graph consisting of set of 8 nodes {A, B, C, D, E, F, 
G, H} with degrees {3, 3, 4, 4, 5, 4, 4, 3} respectively. The minimal degree of 

graph ( ) 3G  for vertices {A, B, H} and maximal degree ( ) 5G   for only one 

vertex {E}. 
We assume, that the minimal dominating set represents the most important 

nodes for traffic flow management. In this way, we can formulate the problem of 
how many broken links in the network will cause to add at least one node as the 
most important for traffic flow management. In other words, the question is how 
vulnerable for disruptive events this network is.  

 

Fig. 1. Part of urban transportation network with 8 nodes 

Rys. 1. Fragment miejskiej sieci transportowej z 8 węzłami 

To solve this problem, we can use the domination number and the bondage-
connected number mentioned in Subsection 3.1. This can be considered in two ways.  

First way is the general approach. After deleting arcs in graphs, the new 
minimal dominating set has to be found. In the second approach, after operation of 
deleting the edges, the new minimal dominating set is extension the beginning one. 

In the Fig. 2, the minimal dominating set of considered network is given as 
blue vertices {C, E} and it is found with Algorithm 1. Thus, the domination 

number ( )G of this network is equal to 2. This is the initial set of main nodes in 

aspect of traffic flow management. 
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Fig. 2. Minimal domination set (blue nodes), domination number 2)( G  

Rys. 2. Minimalny zbiór dominujący (niebieskie wierzchołki), liczba dominowania 2)( G  

Now, we can consider the vulnerability of this network in general case. The 

resulting graph is presented in Fig. 3 according to the definition of bondage-

connected number of graph G, ( )bc G , mentioned in Section 3.1.  

As we see, in Fig. 3, the cardinality of the minimum dominating set increases 

only after deleting five edges (C,D), (D, E), (E.H), (D,G), (E,F). Thus, the 

( ) 5bc G  and blue vertices are elements of new minimal dominating set {A,G,H}. 

These nodes of urban transportation network are now important in traffic flow 

management point of view. 

 

Fig. 3. The bondage-connected number of transportation network ( ) 5b G   

Rys. 3. Liczba zniewolenia spójnego w sieci transportowej ( ) 5b G   

When we take into account second approach, where the minimal dominating 

set presented in Fig. 2 is fixed and after deleting the edges, the initial minimal 

dominating set is extended by addition of one vertex. As it is presented in Fig. 4, 

the only one edge erasing is enough to increase the domination number of graph G.  

This approach is the simplier than this presented firstly, because traffic flow 

management system needs less time to react for changes in transportation network. 

But on the other side, in this approach, the urban transportation network is more 

vulnerable for disruptive events. Only one edge makes problems in considered 

network. 

Necessary deleting five red-dotted edges: (C,D), (D, E), (E.H), (D,G), (E,F), 

the blue vertices form the minimal domination set. 



 
Sambor Guze  

 

36  Scientific Journal of Gdynia Maritime University, No. 107, December 2018 

 

 
Fig. 4. The bondage number of transportation network ( ) 1bc G   

for fixed minimal dominating set  

Rys. 4. Liczba zniewolenia w sieci transportowej ( ) 1bc G   przy ustalonym 

 najmniejszym zbiorze dominującym 

The second aim for this section is to show the possible usage of the computer 

program “Algorytmy grafowe” programmed by M. Syslo [Syslo 2011]. The based 

algorithms for: 

 minimal spanning tree;  

 the shortest path problem; 

 the depth first search (DFS);  

 the breadth-first search (BFS) 

are implemented.  

We demonstrate only how to use this programme for finding minimal 

spanning tree for the considered transportation network with random weights. First, 

we introduce the graph represented by urban transportation network, what is shown 

in Fig. 5. In addition to drawing of the graph, the programme also presents  the 

matrix and the list of neighborhood in graph G. The matrix of neighborhood is the 

best representation of graph for computers.  

 

 

Fig. 5. The part of transportation network drawn in “Algorytmy grafowe” 

Rys. 5. Fragment sieci transportowej narysowany w programie „Algorytmy grafowe” 
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We consider the simple, undirected graph as the model of transportation 

network. To find the minimal spanning tree, we need to use the edge weighted 

graph (G, we). The weights are random, generated by computer programme in the 

number range presented by interval [11;75]. The edge-weighted graph is shown  

in Fig. 6.  

 

Fig. 6. The edge-weighted graph generated by computer programme 
 

Rys. 6. Graf z wagami krawędziowymi wygenerowany przez program komputerowy 

For this edge-weighted graph, the minimum spanning tree sought by the 

algorithms Kruskal’s or Prim’s is presented in Fig. 7. 

 

Fig. 7. The minimum spanning tree for edge-weighted graph ( , )eG w
 

Rys. 7. Najmniejsze drzewo spinające dla grafu ( , )eG w  
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The green edges form the minimum spanning tree (A,B), (F,G), (B,C), (C,G), 

(D,E), (C,D), (A,H) with respective set of weights {13,21,24,27,30,30,32}. Thus, 

the weight of this minimum spanning tree is equal to 177.  

6. CONCLUSIONS 

In the paper selected graph theory concepts have been presented, i.e. domination 

number, bondage and bondage-connected number, minimum spanning tree with 

application. First, the descriptions of basic notations in graph theory have been 

introduced. Next, the concepts of domination, bondage number, bondage-

connected and their implementations to the transportation network description and 

modelling have been proposed. Moreover, the algorithms for finding spanning tree 

or maximal flow in networks have been presented.  

Finally, the applications of presented methods have been shown for part of 

urban transporation network. These applications show that, the graph theory 

methods used as the tools for analysing and optimazing the transportation networks 

are helpful. They are simple but at the same time they model the real systems and 

networks accurately. In the future, the weighted-algorithms for vulnerability should 

be presented. To achieve this goal, first of all, the algorithm for finding the 

weighted-domination number has to be proposed. Next, the weighted bondage-

connected number would be defined. This approach can give the opportunity to 

take into account the significance of the transport network nodes. 
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