
Scientific Journal of Gdynia Maritime University

Scientific Journal of Gdynia Maritime University, No. 111, September 2019 7

No. 111/19, 7–16 Submitted: 18.06.2018

ISSN 2657-6988 (online) Accepted: 07.11.2018

ISSN 2657-5841 (printed) Published: 23.09.2019
DOI: 10.26408/111.01

EMBEDDED WEATHER STATION DATA DISTRIBUTION

IN A DATASOCKET CLIENT-SERVER NETWORK
ON THE LABVIEW PLATFORM

Dorota Rabczuk

Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland,
Faculty of Electrical Engineering, Department of Marine Telecommunications,
e-mail: d.rabczuk@we.umg.edu.pl, ORCID 0000-0003-0636-0464

Abstract: The article presents a model of a weather receiving station comprising
a microcontroller system and LabVIEW application. The microcontroller system is equipped
with a receiving radio modem and is intended to decode the frames of data transmitted by
a weather station used to monitor weather sensors. The decoded stream of data is sent to
a PC computer via a serial interface. The data is distributed over the Ethernet via
a LabVIEW DataSocket application, based on the TCP protocol. The data is saved to a text
file associated with the local DataSocket server. The DataSocket server allows access to the
data by DataSocket clients connecting over the local network. The DataSocket client
application enables presentation of current and historical data on a timeline graph.

Keywords: embedded weather station, DataSocket server in LabVIEW, client-server

network in LabVIEW.

1. INTRODUCTION

Modern weather stations can be considered implementations of embedded systems.

They function on the basis of microcontrollers with sensors on the GPIO (General

Purpose Input Output) lines, visualising weather data locally on LCDs or
distributing them over wired (e.g. serial) and wireless networks [Popa and Iapa

2011; Shaout et al. 2014]. Communication between the microcontroller and the

external user is achieved by TCP data transmission through an Ethernet module

connected on the SPI (Serial Peripheral Interface) bus lines and by a radio channel
using a radio module in the non-licensed ISM band.

The goal was to combine within a single design an embedded system based on

two microcontrollers transmitting weather data over a wireless connection, based
on an application developed in LabVIEW, which uses DataSocket components to

distribute and visualise the data over an Ethernet network.

mailto:d.rabczuk@we.umg.edu.pl

Dorota Rabczuk

8 Scientific Journal of Gdynia Maritime University, No. 111, September 2019

The TCP/IP-based DataSocket technology facilitates and automates the

establishment of client-server connections. Data are collected on a DataSocket

server, accessible by network clients by providing the host URL where the server is
running. DataSocket clients that download the data collected on the server are

installed on other PCs, forming a distributed data transmission system [Khera and

Balguvhar 2013; Yiwei et al. 2017; Pałczyńska and Rabczuk 2018;].
In this design, the data source for the DataSocket server resources is an

embedded system that monitors weather measurement sensors on GPIO lines.

2. MICROPROCESSOR-BASED WEATHER DATA RECEIVER

For the purpose of the project, a microprocessor-based weather data receiver was

designed and built, equipped with a wireless modem compatible with the purchased

radio transmitter weather station and a weather sensor suite installed on a mast. The

sensor suite comprised: wind speed and direction (anemometer), temperature,
humidity and precipitation sensors.

The weather station wireless modem operated in the 868 MHz band with OOK

(On-Off Keying) modulation. Bits were pulse duration modulated (PDM).
A logical one was represented by a 0.5 ms positive pulse, while a logical zero was

represented by a 1.5 ms positive pulse. There was a 1 ms gap (0V) between the

pulses. Pulse duration modulation ensured high pulse width tolerance during
readouts, important in high-noise radio channels, while the bi-phased logical states

enabled frame auto-synchronisation. Due to the method of bit modulation, frame

width expressed in time units was not constant and depended on the percentage

share of logical zeroes and ones.
The weather station transmission protocol defined the frame format, which

comprised 9 bytes: preamble with device ID, 8 bytes with sensor data, and a single-

byte error detection CRC (Cyclic Redundancy Code) [Szlas 2018]. For the purpose
of efficient data packaging, the bit sequence in a frame was divided into nibbles

(4 bits each). The preamble contained 3 nibbles, temperature with a sign bit was

recorded on 3 nibbles, humidity, wind speed and amount of precipitation were

recorded on two nibbles, wind direction and low battery signal were one nibble
each (Tab. 1).

Table 1. Structure of the weather data frame; abc – device identifier, def – temperature,

gh – humidity, ij – average wind speed, kl – wind speed in gusts, op – the amount of rain,
q – low battery indication, r – wind direction, st – checksum

Byte (8 bits) 0 1 2 3 4 5 6 7 8 9

Nibble (4 bits) a b c d e f g h i j k l m n and p q r s t

Embedded Weather Station Data Distribution in a DataSocket Client-Server Network
on the LabVIEW Platform

Scientific Journal of Gdynia Maritime University, No. 111, September 2019 9

Frames were transmitted cyclically: every 50 s a frame is sent twice with

a pause of approx. 30 ms between the frame and its repetition.

Familiarity with the byte modulation method and weather station transmission
protocol enabled the design and build of a microprocessor-based receiver station

(Fig. 1) with an 868 MHz wireless modem. A PD modulated pulse sequence was

downloaded from the modem data line and software decoded by the
microcontroller.

The pulse decoding algorithm used two microcontroller interrupts: an external

interrupt activated by each pulse slope (descending and ascending) and a timer
interrupt that counted equal time intervals of 100 us each in COMPARE CTC

(Clear on Compare Match) mode. The 100 us interval was determined by entering

1600 in the timer's OCRxx comparative register, assuming that the microcontroller

had a quartz-regulated frequency of 16 MHz, and the timer prescaler value was 1.
During the timer interrupt procedure, counter L was incremented, which stored the

number of timer interrupts, which in turn was a multiple of the 100 us interval

(Fig. 2).

Fig. 1. Simplified embedded weather station

The external interrupt procedure began by reading the status of the wireless
modem data lines and identifying which slope caused the interrupt: ascending or

descending (Fig. 3). A descending slope ended in a positive pulse and then the

timer interrupt L count was checked, which as a multiple of the 100 us interval it

Dorota Rabczuk

10 Scientific Journal of Gdynia Maritime University, No. 111, September 2019

enabled the pulse duration to be determined. An L value between 4 and 6 was

considered a logical 1, and an L value between 14 and 16 was considered a logical

0. Otherwise, all counters were reset and another frame was read. Once a logical 0
or 1 bit was identified, the BIT flag was set. The pause duration between pulses

was not analysed as the algorithm already had sufficient protection.

Timer interrupt



Increment interrupt counter L



Return

Fig. 2. Microcontroller timer interrupt algorithm

 The main program waited for the BIT flag (Fig. 4). When it received the flag,

it checked if a preamble had been received. If not, it inserted the bit into the
preamble using the bit rotation method and compared it with the preamble

reference. If unsuccessful, it waited for another bit. When a preamble was

identified, subsequent bits were inserted by bit rotation into the corresponding
frame bytes. Bits were counted from 0 to 7, and frame bytes from 0 to 8. Once all

frame bytes were filled, the CRC checksum was checked using a polynomial

division-based algorithm identical to the one used in the transmitter.

Fig. 3. Microcontroller external interrupt algorithm

Return

IMPULSE flag?

y
e

s

n
o

 Ascending
slope

Set IMPULSE flag

Reset L

Return

Internal interrupt

Timer reset

Data line status readout

Low battery? no yes IMPULSE flag?

n
o

yes

Descending
slope

Reset L

Return

Timer interrupt
count L readout

Logical zero
identified

S
e

t
B

IT
 f

la
g

re
s
e

t
IM

P
U

L
S

E
 f

la
g

R
e
tu

rn

Reset all counters

Logical one
identified

Return

Embedded Weather Station Data Distribution in a DataSocket Client-Server Network
on the LabVIEW Platform

Scientific Journal of Gdynia Maritime University, No. 111, September 2019 11

Fig. 4. Microcontroller main program algorithm

The microcontroller prepared the received weather data ready to be sent to

a PC over a serial port. To this end, the data were separated with tabulation

characters to maintain compatibility with the requirements of the LabVIEW Write
Delimited Spreadsheet.vi instrument, which saves data in a *.lvm text file and

identifies individual data fields by their separating tabulation characters.

3. SERVER APPLICATION FOR DATA ACQUISITION
AND COLLECTION

In the DataSocket library [Halvorsen 2015], the LabVIEW environment offers

a range of virtual instruments for client-server TCP communication, which were

used to design the OPC_SERVER.vi application for data acquisition and collection.
The application consists of two while() loops known as “Serial communication

with microcontroller” and “DataSocket Write Loop”. These function

independently and continuously until the application is stopped or a system or

communication error occurs in either of them (Fig. 5).
The while() loop “Serial communication with microcontroller" is responsible

for establishing serial communication with the microcontroller and for receiving

sensor data. Virtual instruments from the VISA library were used for this purpose,
including: VISA Configure Serial Port, VISA Write, VISA Read and VISA Close,

which in the LabVIEW environment support serial communication.

Standard parameters were used for serial transmission with the
microcontroller: 9600bps, 8n1 (Fig. 5). An algorithm was selected, under which the

VISA Write.vi instrument cyclically sends the “s” character with a defined time

raster, e.g. 1 minute, and in response the microcontroller sends a sensor data

Main program

Insert new bit into
current byte

Increment bit

no

yes

7th bit?

Reset bit counter

Increment byte counter

no

yes

Last frame
byte?

Reset all counters

Read data from frame

BIT flag?
no

no

no

yes

yes

yes

Reset BIT flag

PREAMBLE flag?
Enter new bit into

preamble byte

Preamble
identified?

Set PREAMBLE flag

Dorota Rabczuk

12 Scientific Journal of Gdynia Maritime University, No. 111, September 2019

package. The data package is received by the VISA Read.vi instrument as a string,

then the decimal stop character, used in the C language for microcontrollers, is

replaced with the decimal comma character used in the LabVIEW environment.
The character replacement is done in the Search and Replace String.vi instrument.

Fig. 5. LabVIEW OPC_SERVER.vi virtual instrument for acquisition
and collection of measurement data

Sensor data are combined (Concatenate String.vi) with the system clock time

to build a two-dimensional array where consecutive lines are added to a *.lvm text

file by the Write Delimited Spreadsheet.vi instrument each time new data are

Embedded Weather Station Data Distribution in a DataSocket Client-Server Network
on the LabVIEW Platform

Scientific Journal of Gdynia Maritime University, No. 111, September 2019 13

received over the serial connection. The while() loop called “DataSocket Write

Loop” associates the *.lvm data file with DataSocket server resources.

The DataSocket application (…\National Instruments\DataSocket\cwdss.exe)
should be enabled in LabVIEW services and DSTP (DataSocket Transport

Protocol) selected, indicating the measurement data collected locally

(dstp://localhost/wave) – they have the default name “wave”. An active DataSocket
server acquires new versions of the indicated weather sensor data file cyclically as

long as the program is running, using the DataSocket Write.vi virtual instrument.

These data are then shared in the local IP network to connected DataSocket service
clients.

Fig. 6. User panel of the OPC_SERVER.vi instrument for acquisition
and collection of measurement data

Thanks to the two independent while() loops in the OPC_SERVER.vi, it is

possible to concurrently execute serial communication with the downloaded data

saved to a file, and to update the data file in the DataSocket network server
resources. The data file format adopted facilitates their visualisation in charts vs

time on the client's side (Fig. 6).

4. CLIENT APPLICATION FOR DATA VISUALISATION

The DataSocket client application called OPC_CLIENT.v is run on another

computer in the local IP network (Fig. 7). The Open File.vi instrument opens the

*.lvm file remotely over the network on the DataSocket server in read-only mode.

Dorota Rabczuk

14 Scientific Journal of Gdynia Maritime University, No. 111, September 2019

The file address is preceded by the IP number of the DataSocket server, and file

transfer is effected using the DSTP protocol (similar to FTP). The SpreadSheet

String to Array.vi instrument inserts the string characters read in a two-dimensional
array. The first line, which can contain incomplete data, and the left column are

deleted from the array due to the adopted microcontroller transmission method,

which begins transmissions starting with the tabulation character, creating an
empty left column in this manner. Following this operation, the leftmost column of

the resulting array contains the time in hours, minutes and seconds, while

subsequent columns transfer the temperature, humidity and wind speed values.

Fig. 7. LabVIEW OPC_CLIENT.vi virtual instrument for visualisation of measurement data

Embedded Weather Station Data Distribution in a DataSocket Client-Server Network
on the LabVIEW Platform

Scientific Journal of Gdynia Maritime University, No. 111, September 2019 15

Reading each column separately is possible when the table is transformed into

an indexed one in the Index Array.vi instrument. Next, the hour, minute and second

values are taken from the first column as numbers and translated to the current
number of seconds, which is paired with the data from the second, third and fourth

columns to draw three charts. Following the transposition, the coordinates of the

subsequent charts are fed to an indicator which creates a chart of 30 points which
correspond to the weather data collected during the last hour.

Fig. 8. Measurement data visualisation in the DataSocket network client application

5. SUMMARY

The project constitutes a practical confirmation of the ability of an embedded

microprocessor system to work with a DataSocket client-server network based on

TCP/IP and FTP protocols. Data collected on a DataSocket server remain available
for further analysis, and DataSocket clients in the local IP network are able to view

charts drawn on the basis of current and historical weather data values. The

solution presented here can also be used for other applications using distributed
measurement systems.

REFERENCES

Halvorsen, H., 2015, DataSocket Simplifies Live Data Transfer for LabVIEW, http://www.ni.com/
pdf/datasocket/us/datasocketarticle.pdf.

Khera, N., Balguvhar, S., 2013, Development of a Simple Microcontroller Based Real-Time Data
Acquisition and Alert System in LabVIEW Environment, Proceedings of International
Conference on Reliability, Infocom Technologies and Optimization (ICRITO’2013), Noida,
India.

Temperature Moisture content Wind speed

http://www.ni.com/%0b%1fpdf/da%1ftasocket/us/datasocketarticle.pdf
http://www.ni.com/%0b%1fpdf/da%1ftasocket/us/datasocketarticle.pdf

Dorota Rabczuk

16 Scientific Journal of Gdynia Maritime University, No. 111, September 2019

Pałczyńska, B., Rabczuk, D., 2018, Low-cost Embedded System for Environmental Monitoring Over

the Ethernet with LabVIEW User Interface, Proceedings of 18th Annual International
Conference on Environmental and Electrical Engineering, 12–15 June, Palermo, Italy.

Popa, M., Iapa, C., 2011, Embedded Weather Station with Remote Wireless Control, 19th Tele-
communication Forum (TELFOR) Proceedings of Papers, 22–24 November, Belgrade, Serbia.

Shaout, A., Li, Y., Zhou, M., Awad, S., 2014, Low Cost Embedded Weather Station with Intelligent
System, 10th International Computer Engineering Conference ICENCO, Giza, Egypt.

Szlas, F., 2018, Projekt i wykonanie autonomicznej mikroprocesorowej stacji pogodowej, praca
dyplomowa inżynierska, Akademia Morska w Gdyni, Wydział Elektryczny, Gdynia.

Yiwei, W., Mengling, W., Chun, T., Tianhe, M., 2017, Development of Remote Data Acquisition
System Based on OPC for Brake Test Bench, Journal of Physics, The 2nd Annual International
Conference on Information System and Artificial Intelligence (ISAI), Tianjin, China.

	ZN_111_druk 7
	ZN_111_druk 8
	ZN_111_druk 9
	ZN_111_druk 10
	ZN_111_druk 11
	ZN_111_druk 12
	ZN_111_druk 13
	ZN_111_druk 14
	ZN_111_druk 15
	ZN_111_druk 16

