Modeling of a Three-Point Bend Test of a Beam Made of AW 5083 Alloy


Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland, Faculty of Mechanical Engineering, e-mail:


Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland, Faculty of Mechanical Engineering


The paper describes the modeling of a three-point bend test carried out on a beam made of the AW 5083 aluminium alloy performed using the finite element method. The three-point bend test was carried out experimentally in accordance with the current standard PN-EN ISO 7438:2016-0. During the test, the values of the beam material constants, such as Poisson number and Kirchoff modulus which were necessary for the modeling were determined. The results obtained in the test allowed for modelling using software based on the finite element method, such as MSC Patran and Abaqus software. The test modelling in the software was performed taking into account the beam geometry, the material properties, the boundary conditions, and the load. In order to verify the model, a comparative analysis was performed of the values of the bend of the beam’s central axis obtained from the experiment and the values obtained after the FEM modeling and those obtained by the analytical method.

numerical modeling, bent beam, Abaqus, MSC Patran, analysis, FEM
Download full text in pdf: 

This article is an open access article distributed under a Creative Commoms Attribution (CCBY 4.0) licence


Bugłacki, H., Kłyszewski, A., 2001, Initial Investigations of Mechanical Properties and Corrosion Resistance of AlZnMgLi Alloys, Inżynieria Materiałowa, Year XXII, no. 4.

Bujniewicz, Z., Cudny, K., Wincza, M., 1971, Stopy aluminium w budownictwie okrętowym, Wydawnictwo Morskie, Gdańsk 1971.

Burzyński, S., Chruścielewski, J., Daszkiewicz, B., Sobczyk, B., Witkowski, W., 2014, Wprowadzenie do modelowania w programie Abaqus, Wydawnictwo Politechniki Gdańskiej, Gdańsk.

Czapczyk, K., Kyzioł, L., 2013, Influence of Heat Treatment on Stress – Corrosion Resistance of EN AW-AIZn5Mg1,5CuZr Alloy, Solid State Phenomena, Mechatronic System and Materials, vol. 199, pp. 424–429.

Dashwood, R., Efthymiadis, P., Maa, A., Pinna, C., Shollock, B., Ye, W., 2018, Experimental and Modeling Study of Fatigue Crack Initiation in an Aluminium Beam with a Hole under 4-point Bending, International Journal of Solids and Structures, vol. 138, pp. 87–96.

Davis, J.R., 2004, Aluminium and Aluminium Alloys.

Derewońko, A., Niezgoda, T., 2009, Multiscale Composite FEM Modeling, Procedia Engineering, vol. 1, no. 1, pp. 209–212.

Dumont, C., Hill, H., 1940, Lateral Stability of Equal Flanged Aluminum Alloy I-beams Subjected to Pure Bending, NACA TN 770.

Gardner, L., Su Mei-Ni, Young, B., 2014, Deformation-Based Design of Aluminium Alloy Beams, Engineering Structures, vol. 80, no. 1, pp. 339–349.

Gzik, M., John, M., 2014, Wybrane problemy numerycznej symulacji trójpunktowego zginania próbek z kości korowej, Politechnika Śląska, Gliwice.

Hajdukiewicz, G., 2018, Impact of the Type of Quench Aging after Hyperquenching on the Mechanical Strength Properties of AW-7020 Alloy, Journal of Kones, vol. 25, no. 2.

Jurczak, W., 2006, Właściwości mechaniczne i korozyjne stopu AlZn5Mg1 po modyfikacji pierwiastkami stopowymi, Zeszyty Naukowe Akademii Marynarki Wojennej w Gdyni, Year XLVII, vol. 3, no. 166.

Kaufman, J.G., Rooy, E.L., 2004, Alluminum Alloy Castings: Properties, Processes and Applications, ASM International.

Konderla, P., 1988, Metoda elementów skończonych w mechanice konstrukcji, Warszawa.

Kyzioł, L., 2016a, Reinforcing Wood by Surface Modification, Composite Structures, vol. 158, no. 1, pp. 64–71.

Kyzioł, L., 2016b, The Influence of Temperature and Strain Rate on the Strengthening of Metallic Materials, Journal of Kones, vol. 23, no. 2, pp. 199–206.

Kyzioł, L., 2019a, Application of the Kolmogorov-Sinai Entropy in Determining the Yield Point, as Exemplified by the EN AW-7020 Alloy, Journal of KONBiN, vol. 49, no. 3, pp. 241–269.

Kyzioł, L., 2019b, Dynamic Properties of 40HM Steels at High Strain Rates, Translations of Famena, XLIII, vol. 1, pp. 55–68.

Kyzioł, L., Komarov, A., 2002, Influence of Micro-Arc Oxidation Coatings on Stress Corrosion of ALMg6 Alloy Materials, Materials, vol. 13, no. 2, pp. 1–11.

Lee, J.K., Zhao, K.M., 2002, Finite Element Analysis of the Three-Point Bending of Sheet Metals, Journal of Materials Processing Technology, vol. 122, no. 1, pp. 6–11.

Mika, P., 2011, Support for Materials for Classes FEM Analysis of Elastic Problems at ABAQUS Problems, Koszalin University of Technology, Koszalin.

Obst, M., 2007, Energetyczny model materiału o nieliniowych właściwościach, Politechnika Poznańska, Poznań.

Polish Committee for Standardization, Metallic Materials. Bending Test, PN-EN ISO 7438:2016-03, Warsaw 2016.

Polus, Ł., Szumigała, M., 2017, A Numerical Simulation of an Aluminium-Concrete Beam, Procedia Engineering, vol. 172, pp. 1086–1092.

Polus, Ł., Szumigała, M., 2019, An Experimental and Numerical Study of Aluminium-Concrete Joints and Composite Beams, Archives of Civil and Mechanical Engineering vol. 19, no. 2, pp. 375–390.

Pradeau, A., Thuillier, S.J., Yoon, J.W., 2016, Prediction of Failure in Bending of an Aluminium Sheet Alloy, International Journal of Mechanical Sciences, vol. 119, pp. 23–33.

Singh, A.K., Tyagi, R., Ranjan, V., Sathujoda, P., 2018, FEM Simulation of Three-point Bending Test of Inconel 718 Coating on Stainless Steel Substrate, Vibroengineering PROCEDIA, vol. 21, pp. 248–252.

Zienkiewicz, O., 1979, Metoda elementów skończonych, Politechnika Warszawska, Warszawa.

Zienkiewicz, O., Zhu, J., 1987, A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis, Numerical Methods in Engineering, vol. 24, pp. 337–358.

Internet sources, online access, August 2019., online access, August 2019.

Daria Żuk

Citation pattern: Żuk D., Hajdukiewicz G., Modeling of a Three-Point Bend Test of a Beam Made of AW 5083 Alloy, Scientific Journal of Gdynia Maritime University, No. 116, pp. 100-111, 2020

BibTeX     EndNote