abbr. SJ GMU
ISSN 2657-5841 (printed)
ISSN 2657-6988 (online)
DOI: 10.26408
Spektroskopowe badania wyładowania mikrofalowego w źródle plazmy typu komora rezonansowa zasilana falowodowo
In this paper, results of spectroscopic study of microwave (2.45 GHz) plasma at atmospheric pressure in waveguide-supplied resonant-cavity-based plasma source are presented. Pure argon, nitrogen and methane, as well as mixtures argon/methane and nitrogen/methane were used as working gases. Working gas flow rate and microwave absorbed power varied from 50 up to 100 l/min and from 300 up to 4000 W, respectively. The emission spectra in the range of 300-600 nm were recorded. The rotational and vibrational temperatures of N2+ ions, C2, N2 and CN molecules were determined by comparing the measured and simulated spectra.
W pracy przedstawiono wyniki spektroskopowych badań wyładowania mikrofalowego (2,45 GHz) pod ciśnieniem atmosferycznym, generowanego w źródle plazmy typu komora rezonansowa. Gazami roboczymi były: argon, azot oraz metan, a także mieszaniny argon/metan oraz azot/metan. Natężenie przepływu gazu roboczego zmieniano w zakresie od 50 do 100 l/min, natomiast moc mikrofal absorbowanych przez wyładowanie wynosiła od 300 do 4000 W. Zmierzone zostały widma z zakresu 300–600 nm. Zmierzone widma emisyjne porównywane były z widmami uzyskanymi przy użyciu programów symulacyjnych w celu wyznaczenia temperatur rotacyjnych i oscylacyjnych jonów azotu N2+ oraz molekuł węgla C2, azotu N2 i cyjanu CN.
Baeva M., Gier H., Pott A., Uhlenbusch J., Hoschele J. i in., Pulsed microwave discharge at atmospheric pressure for NOx decomposition, Plasma Sources Science Technology, Vol. 11, 2002, No. 1, s. 1–9.
Bayliss K.H., Plasma generator with field-enhancing electrodes, patent amerykański nr US 5418430, 1995.
Gillespie R.F., Hall S.I., Raybone D., Winterbottom F., Plasma gas processing, patent amerykański nr US 6126779, 2000.
Henriques J., Bundaleska N., Tatarova E., Dias F.M., Ferreira C.M, Microwave plasma torches driven by surface wave applied for hydrogen production, International Journal of Hydrogen Energy, Vol. 36, 2011, No. 1, s. 345–354.
Izarra Ch., UV OH spectrum used as a molecular pyrometer, Journal Physics D: Applied Physics, Vol. 33, 2000, No. 14, s. 1697.
Janus H.W., Musielok J., Field strength and temperature distributions in N2/H2 DBD discharge determined from measured spectral distributions of H? and N2+ radiation, International Conference on Plasma Diagnostics 2010, Pont-á-Mousson, France, 2010, P52.
Jasiński J., Dors M., Mizeraczyk J., Destruction of Freon HFC-134a Using a Nozzleless Microwave Plasma Source, Plasma Chem. Plasma Process., Vol. 29, 2009, No. 5, s. 363–372.
Jasiński M., Dors M., Mizeraczyk J., Production of hydrogen via methane reforming using atmospheric pressure microwave plasma, Journal of Power Sources, Vol. 181, 2008, No. 1, s. 41–45.
Jasiński J., Mizeraczyk J., Zakrzewski Z., Ohkubo T., Chang J.S., CFC-11 destruction by microwave plasma torch generated atmospheric-pressure nitrogen discharge, Journal Physics D: Applied Physics, Vol. 35, 2002, No. 18, s. 2274–2280.
Kono A., Wang J., Aramaki M., Production and characterization of high-pressure microwave glow discharge in a microgap aiming at VUV light source, Thin Solid Films, Vol. 506–507, 2006, s. 444–448.
Laux C.O., Radiation and Nonequilibrium Collisional-Radiative Models, [w:] Physico-Chemical Modeling of High Enthalpy and Plasma Flows, D. Fletcher, J.-M. Charbonnier, G.S.R. Sarma, T. Magin (eds.), von Karman Institute Lecture Series 2002-07, Rhode-Saint-Genčse, Belgium, 2002, http://www.specair-radiation.net [6.04.2012].
Laux C.O., Spence T.G., Kruger C.H., Zare R.N., Optical diagnostics of atmospheric pressure air plasmas, Plasma Sources Science Technology, Vol. 12, 2003, No. 3, s. 125–138.
Lee K.-Y., Park B.J., Lee D.H., Lee I.-S., Hyun S.O. i in., Sterilization of Escherichia coli and MRSA using microwave-induced argon plasma at atmospheric pressure, Surface & Coatings Technology, Vol. 193, 2005, No. 1–3, s. 35–38.
Luque J., Crosley D.R., LIFBASE: Database and Spectral Simulation Program (Version 1.5), SRI International Report MP 99-009, 1999, http://www.sri.com/psd/lifbase/ [6.04.2012].
Okada A., Kijima K., Measurement of C2 rotational temperature in Ar-SiH4-CH4 inductively coupled plasma flame with Abel inversion, Journal Physics. D: Applied Physics, Vol. 35, 2002, No. 17, s. 2126–2132.
Pawelec E., Estimation of the plasma temperature by using the resolved spectrum of N2+, The European Physical Journal Special Topics, Vol. 144, 2007, No. 1, s. 227–231.
Pawelec E., Simek M., Nassar H., Czernichowski A., Musioł K. i in., Temperature measurements in non-equilibrium “ferroelectric” plasma, Acta Physica Polonica A, Vol. 89, 1996, No. 4, s. 503–507.
Peelamedu R., Kumar D., Kumar S., Microwave atmospheric pressure plasma for surface treatment and reactive coating on steel surfaces, Surface & Coatings Technology, Vol. 201, 2006, No. 7, s. 4008–4013.
Pfuch A., Cihar R., Deposition of SiO thin films by microwave induced x plasma CVD at atmospheric pressure, Surface & Coatings Technology, Vol. 183, 2004, No. 2–3, s. 134–140.
Raud J., Laan M., Jogi I., Rotational temperatures of N2(C,0) and OH(A,0) as gas temperature estimates in the middle pressure Ar / O2 discharge, Journal Physics D: Applied Physics, 2011, Vol. 44, No. 34, s. 345201 (5 stron).
Shin D.H, Bang C.U., Kim J.H., Han K.H., Hong Y.C. i in., Modification of metal surfaces by microwave plasma at atmospheric pressure, Surface & Coatings Technology, Vol. 201, 2007, No. 9–11, s. 4939–4942.
Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P., Atmospheric pressure plasmas: A review, Spectrochim. Acta Part B, Vol. 61, 2006, No. 1, s. 2–30.