Badania eksperymentalne mikrofalowego generatora mikroplazmy małej mocy

Experimental investigations of low power microwave microplasma generator

Dariusz Czylkowski         Bartosz Hrycak         Mariusz Jasiński         Jerzy Mizeraczyk    https://orcid.org/0000-0002-5173-3592     

Abstract: 

In this paper a novel microwave source of microplasma (MmPS) generated is gases at atmospheric pressure is presented. The design, rule of operation and experimental investigations of the new MmPS are described. The main advantage of the presented microplasma source is its simplicity and low cost. The microplasma has a form of a small plasma jet of dimensions of a few mm, depending on the kind of gas, gas flow rate and absorbed microwave power. All results of experimental investigations presented in this paper were obtained with an atmospheric pressure argon, krypton, nitrogen and air microplasma, sustained at 2.45 GHz. The absorbed microwave power were up to 70 W and gas flow rates from 2 to 25 l/min. The simplicity of the source and stability of the microdischarge allows to conclude that the presented new microwave microplasma source can find practical applications in various fields.

Streszczenie: 

W pracy przedstawiono nowe mikrofalowe źródło mikroplazmy generowanej w gazach pod ciśnieniem atmosferycznym. Opisano budowę, zasadę działania i badania eksperymentalne nowego źródła mikroplazmy. Istotną zaletą przedstawionego generatora są prosta budowa i niski koszt produkcji. Generowana mikroplazma ma formę płomienia o wymiarach kilku mm w zależności od rodzaju gazu, przepływu gazu i mocy fali absorbowanej. Wszystkie wyniki prezentowanych w pracy badań eksperymentalnych uzyskano dla mikroplazmy w argonie, kryptonie, azocie i powietrzu pod ciśnieniem atmosferycznym i częstotliwości mikrofal 2,45 GHz. Moc fali absorbowanej w plazmie wynosiła do 70 W, a przepływ gazu w zakresie od 2 do 25 l/min. Prostota budowy generatora i stabilność generowanej mikroplazmy pozwalają wnioskować, że prezentowane nowe źródło mikroplazmy znajdzie zastosowanie w wielu różnych dziedzinach.

Issue: 
Pages: 
137
148
Download full text in pdf: 
References: 

Bilgic A.M., Engel U., Voges A.M., Kuckelheim M. i in., A new low-power microwave plasma source using microstrip technology for atomic emission spectrometry, Plasma Sources Science Technology, Vol. 9, 2000, No. 1, s. 1–4.

Broekaert J.A.C., Siemens V., Bings N.H., Microstrip microwave induced plasma on a chip for atomic emission spectral analysis, IEEE Transactions on Plasma Science, Vol. 33, 2005, No. 2, s. 560–561.

Choi J., Iza F., Do H.J., Lee J.K. i in., Microwave-excited atmospheric-pressure microplasmas based on a coaxial transmission line resonator, Plasma Sources Science Technology, Vol. 18, 2009, No. 2, s. 25–29.

Gregório J., Leroy O., Leprince P., Alves L.L. i in., Design of a microwave microplasma source at atmospheric pressure, IEEE Transactions on Plasma Science, Vol. 37, 2009, No. 6, s. 797–808.

Hirasawa Makoto, Seto Takafumi Kwon Soon-Bark, Decomposition of volatile organic compounds using surface-discharge microplasma devices, Jpn Journal Applied Physics, Part 1, Vol. 45, 2006, No. 3A, s. 1801–1804.

Ichiki T., Taura R., Horiike Y., Localized and ultrahigh-rate etching of silicon wafers using atmospheric-pressure microplasma jets, Journal Applied Physics, Vol. 95, 2004, No. 1, s. 35–39.

Kanazawa S., Daidai R., Akamine S., Ohkubo T., Generation of microplasma jet at atmospheric pressure using a modified waveguide-based plasma torch, Surface & Coatings Technology, Vol. 202, 2008, No. 22–23, s. 5275–5279.

Kikuchi T., Hasegawa Y., Shirai H., Rf microplasma jet at atmospheric pressure: characterization and application to thin film processing, Journal Physics D: Applied Physics, Vol. 37, 2004, No. 11, s. 1537–1543.

Kim J., Terashima K., 2.45 GHz microwave-excited atmospheric pressure air microplasmas based on microstrip technology, Applied Physics Letters, Vol. 86, 2005, No. 19, s. 191504– 191504-3.

Kono A., Wang J., Aramaki M., Production and characterization of high-pressure microwave glow discharge in a microgap aiming at VUV light source, Thin Solid Films, Vol. 506–507, 2006, s. 444–448.

Kroplewski Ł., Jasiński M., Dors M., Zakrzewski Z. i in., Coaxial microplasma source, Przegląd Elektrotechniczny, Vol. 85, 2009, No. 5, s. 122–123.

Shimizu Y., Sasaki T., Ito T., Terashima K. i in., Fabrication of spherical carbon via UHF inductively coupled microplasma CVD, Journal Physics D: Applied Physics, Vol. 35, 2003, No. 23, s. 2940–2944.

Shimizu K., Sugiyama T., Nishamani M., Kanamori M., Application of micro plasma for NOx removal, Industry Applications Conference 2007, 42nd IAS Annual Meeting, Conference Record of the 2007 IEEE, New Orleans, Louisiana, 2007, s. 1887–1892.

Sichler P., Büttgenbach S., Baars-Hibbe L., Schrader C. i in., A micro plasma reactor for fluorinated waste gas treatment, Chemical Engineering Journal, Vol. 101, 2004, No. 1–3, s. 465–468.

Slepokurov A.S., Sergatskii G.I., Alikin A.P., Use of microplasma welding in component construction, Chemical and Petroleum Engineering, Vol. 7, 1971, No. 11, s. 979–980.

Stoffels E., Kieft I.E., Sladek R.E., van den Bedem L.J.M. i in, Plasma needle for in vivo medical treatment: recent development and perspectives, Plasma Sources Science Technology, Vol. 15, 2006, No. 4, s. 169–180.

Voropai N.M., Shcherbak V.V., Grigoriev A.A., Pulsed microplasma welding of aluminum gaskets, Chemical and Petroleum Engineering, Vol. 7, 1971, No. 11, s. 977–978.

Yoshiki H., Generation of air microplasma jet and its application to local etching of polyimide films, Jpn. Journal Applied Physics, Vol. 45, 2006, No. 6B, s. 5618–5623.

www.for1123.rub.de/FG1123/.

www.spc.edu/pages/3093.asp.

Citation pattern: Czylkowski D., Hrycak B., Jasiński M., Mizeraczyk J., Badania eksperymentalne mikrofalowego generatora mikroplazmy małej mocy, Scientific Journal of Gdynia Maritime University, No. 75, pp. 137-148, 2012

BibTeX     EndNote